Module 1: Soil Water Retention
2nd Grade

About the Instructions:

This document is intended for use by classroom teachers, SciTrek leads, and SciTrek volunteers. The document has been composed with input from teachers, leads, volunteers, and SciTrek staff to provide suggestions to future teachers/leads/volunteers. The instructions are not intended to be used as a direct script, but were written to provide teachers/leads/volunteers with a guideline to present the information that has worked in the past. Teachers/leads/volunteers should feel free to deviate from the instructions to help students reach the learning objectives of the module. Places in which you can be creative and mold the program to meet your individual teaching style, or to meet the needs of students in the class are: during class discussions, managing the groups/class, generating alternative examples, and asking students leading questions. However, while running the module make sure to cover all the material each day within the scheduled 60 minutes. In addition, no changes should be made to the academic language surrounding observations or the Observation Activity.

Activity Schedule:
There are no scheduling restrictions for this module.

- Day 1: Technique/Observation Activity/Observations (60 minutes)*
- Day 2: Question/Materials Page/Experimental Set-Up/Procedure/Results Table (60 minutes)
- Day 3: Experiment/Graph/Results Summary (60 minutes)
- Day 4: Poster Making (60 minutes)
- Day 5: Poster Presentations (60 minutes)
- Day 6: Tie to Standards (60 minutes)*
 * This schedule assumes the teacher has given the Observation Assessments before SciTrek comes on Days 1 and 6

The exact module dates and times are posted on the SciTrek website (http://www.chem.ucsb.edu/scitrek/elementary) under the school/teacher. The times on the website include transportation time to and from the SciTrek office (Chem 1105). Thirty minutes are allotted for transportation before and after the module, therefore, if a module was running from 10:00-11:00, then the module times on the website would be from 9:30-11:30.

Student Groups:

Students are divided into four groups of ~five students each for the entire module. One volunteer is assigned to help each group. We find groups work best when they are mixed levels and mixed language abilities.

NGSS Performance Expectation Addressed:

2-ESS2-1 Compare multiple solutions designed to slow or prevent wind or water from changing the shape of the land.

Common Core Mathematics Standard Addressed:

2.MD-10 Draw a picture graph and a bar graph (with single-unit scale) to represent a data set with up to four categories. Solve simple put-together, take-apart, and compare problems using information presented in a bar graph.
Learning Objectives:

1. Students will be able to list at least two variables that affect how much water soil absorbs.
2. Students will know that water can change the shape of the land and that humans have found ways to prevent or limit these changes.
3. Students will know how to read and use a graduated cylinder.
4. Students will be able to generate at least three observations about a given system and identify statements that are not observations.
5. Students will be able to list at least one way that they behaved like scientists.

Classroom Teacher Responsibilities:

In order for SciTrek to be sustainable, the program needs to work with teachers on developing their abilities to run student-centered inquiry-based science lessons on their own in their classrooms. As teachers take over the role of SciTrek lead, SciTrek will expand to additional classrooms. Even when teachers lead the modules in their own classrooms, SciTrek will continue to provide volunteers and all of the materials needed to run the module. Below is a sample timeline for teachers to take over the role as the SciTrek lead.

* Groups are made up of ~five students.

1. Year 1
 a. Classroom teacher leads a group (Role: Group Lead; this role is referred to as a volunteer in these instructions)

2. Year 2
 a. Classroom teacher co-leads the modules with a SciTrek staff member (Role: Co-Lead)
 i. Classroom teacher will be responsible for leading entire class discussions (Ex: Observation Activity).
 ii. Classroom teacher will be responsible for time management.
 iii. Classroom teacher will be responsible for overseeing volunteers and helping any groups that are struggling.
 iv. Classroom teacher will be responsible for all above activities, the SciTrek co-lead will only step in for emergencies.
 v. The SciTrek co-lead will run the Tie to Standards Activity.

3. Year 3 and beyond
 a. Classroom teacher leads the modules (Role: Lead)
 i. Classroom teacher will be responsible for leading entire class discussions (Ex: Observation Activity).
 ii. Classroom teacher will be responsible for time management.
 iii. Classroom teacher will be responsible for overseeing volunteers and helping any groups that are struggling.
 iv. A SciTrek staff member will co-lead the Tie to Standards Activity with the classroom teacher for year 3.

SciTrek staff is counting on teacher involvement. Teachers should notify the SciTrek staff if they will not be present on any day(s) of the module. Additional steps can be taken to become a SciTrek lead faster than the proposed schedule above. Contact scitrekelementary@chem.ucsb.edu to learn more.

In addition, teachers are required to come to UCSB for the module orientation, ~one week prior to the start of the module. Contact scitrekelementary@chem.ucsb.edu for exact times and dates, or see our website at http://www.chem.ucsb.edu/scitrek/elementary under your class’ module times. At the orientation, teachers will go over module content, learn their responsibilities during the module, and meet the volunteers that will be helping in their classroom. If you are not able to come to the orientation
at UCSB, you must complete an online orientation. Failure to complete an orientation for the module will result in loss of priority registration for next year.

Prior to the Module (at least 1 week):

1. Come to the SciTrek module orientation at UCSB.
2. Inform SciTrek staff if your class uses any method of subtraction other than what is shown below.

During the Module:

Note: We highly recommend that you complete the initial Observation Assessment prior to **Day 1** of the module and the final Observation Assessment prior to **Day 6** of the module.

If possible, have a document camera available to the lead every day of the module. If you do not have a document camera, please tell the SciTrek staff at orientation.

Days 1-4:

Have the students’ desks/tables moved into four groups and cleared off. This ensures that each student has a desk during SciTrek activities and that students can begin the module as soon as SciTrek arrives.

Days 5-6:

Have the students’ desks/tables cleared off. The desks/tables do not need to be moved into groups.

Scheduling Alternatives:

Some teachers have expressed interest in giving the students more time to work with the volunteers throughout the module. Below are options that will allow the students more time to work with the volunteers. If you plan to do any of the following options, please inform the SciTrek staff no later than your orientation date (~one week before your module, exact orientation times are found at: http://www.chem.ucsb.edu/scitrek/elementary). This will allow the SciTrek staff to provide you with all needed materials.
Day 1: If you would like to have more time for your students to make observations, you can do one, two, or all of the following activities before SciTrek arrives:
1) Observation Assessment (highly recommend)
2) Technique Activity
3) Observation Activity

Day 2: If you would like to have more time for your students to design their experiments, you can go over the possible variables the students can choose from that are outlined in the introduction before SciTrek arrives.

Day 3: If you would like to have more time for your students to perform their experiments, you can do the introduction before SciTrek arrives.

Day 5: If you would like to have more time for your students to discuss their experiments during poster presentations, you may take more time for each presentation and finish the presentations after SciTrek leaves.

Day 6: If you would like more time for the Tie to Standards Activity, you may give the Observation Assessment before SciTrek arrives. (highly recommend)

Materials Used for this Module:

1. 9 oz Clear plastic cups (Smart and Final) with three 1 cm holes drilled in a triangle in the bottom
2. 20 oz Clear plastic cups (Smart and Final)
3. 1 oz Cups any material (Smart and Final)
4. Coffee filters
5. Kellogg's Raised Bed and Potting Mix (Home Depot)
6. Vermiculite (Home Depot)
7. Play sand (Home Depot)
8. Decorative groundcover bark (the smaller the size of the bark the better) (Home Depot)
9. Rocks of three different sizes (small (1/8" La Paz), medium (1/4" pea gravel), large (1/2" pea gravel)) (Goleta Building Materials)
10. ThickenUp Clear (any drugstore)

To make levels of liquid, add the following amount of ThickenUp to 200 mL of water:
- Liquid Level 0 – No ThickenUp
- Liquid Level 1 – 1/3 Tablespoon (or 1 teaspoon)
- Liquid Level 2 – 2/3 Tablespoon (or 2 teaspoons)
- Liquid Level 3 – 1 Tablespoon
- Liquid Level 4 – 1 1/3 Tablespoons
- Liquid Level 5 – 1 2/3 Tablespoons
- Liquid Level 6 – 2 Tablespoons

These solutions can only be stored for about 1 week.

11. Nalgene graduated cylinders 100 mL (Fisher part number: 08-572D)
12. Digital Scale (OHAUS, max weight: 2000 g, readability: 1 g, Model No. H-2715) (Fisher Part Number: S40242-1)
13. Disposable pipets (droppers) (Fisher part number: 13-711-7M)

All printed materials used by SciTrek (student notebooks, materials pages, lead picture packet, poster parts, instructions, and nametags) can be made available for use and/or editing by emailing scitrekelementary@chem.ucsb.edu.
Types of Documents:

Student Notebook:
One given to every student and is filled out by the student. In these instructions, the examples are rectangular and filled out in black. The lead will use a student notebook to write in as an example for students. The notebook that the lead uses is referred to as the class notebook in these instructions.

Notepad:
One given to every group and is filled out by the volunteer. In these instructions, the examples are squarer and filled out in blue.

Picture Packet:
One per class that, if needed, the lead fills out. In these instructions, the examples are rectangular, labeled, and, if applicable, filled out in blue.

In these instructions, all other example documents are labeled.

Day 1: Technique/Observation Activity/Observations

Note: We highly recommend that teachers complete the Observation Assessment prior to Day 1 of the module. The suggested times in the lesson plan below are assuming that the Observation Assessment was given prior to SciTrek arriving.

Schedule:

<table>
<thead>
<tr>
<th>Times if teacher gave assessment prior to SciTrek:</th>
<th>Times if SciTrek must give assessment:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction (SciTrek Lead) – 2 minutes</td>
<td>Introduction (SciTrek Lead) – 2 minutes</td>
</tr>
<tr>
<td>Module Introduction (SciTrek Lead) – 5 minutes</td>
<td>Observation Assessment (SciTrek Lead) – 5 minutes</td>
</tr>
<tr>
<td>Technique (SciTrek Lead) – 13 minutes</td>
<td>Module Introduction (SciTrek Lead) – 5 minutes</td>
</tr>
<tr>
<td>Observation Activity (SciTrek Lead) – 15 minutes</td>
<td>Technique (SciTrek Lead) – 10 minutes</td>
</tr>
<tr>
<td>Observations (SciTrek Volunteers) – 20 minutes</td>
<td>Observation Activity (SciTrek Lead) – 13 minutes</td>
</tr>
<tr>
<td>Wrap-Up (SciTrek Lead) – 5 minutes</td>
<td>Observations (SciTrek Volunteers) – 20 minutes</td>
</tr>
<tr>
<td></td>
<td>Wrap-Up (SciTrek Lead) – 5 minutes</td>
</tr>
</tbody>
</table>

Materials:

(4) Volunteer Boxes:

☐ Student nametags
☐ (7) Student notebooks
☐ Volunteer instructions
☐ Picture of experimental setup
☐ Volunteer lab coat
☐ (2) Pencils
☐ (2) Wet erase markers

☐ Ziploc bag (for wet soil)
☐ Paper towels
☐ Water (8 oz)
☐ (2) 100 mL Graduated cylinders
☐ (4) 20 oz Cups (1) labeled A, (1) labeled B, and (2) unlabeled

☐ (2) 9 oz Cup with holes in bottom labeled A and B
☐ 9 oz Cup with no holes
☐ (4) 1 oz Cups
☐ Potting soil
☐ (7) Bendy straws
☐ (2) Coffee filters
☐ Dropper

Other Supplies:

☐ (4) Large group notepads
☐ Bucket with lid

☐ (4) Trays
☐ (4) Trays
☐ 500 mL Graduated cylinder
Lead Box:

- (3) Blank nametags
- (3) Extra student notebooks
- Picture of experimental setup
- Lead instructions
- Soil water retention picture packet
- Lead lab coat
- Observation Assessment (if teacher did not take assessments then (25) assessments and (25) paperclips)
- Time card
- (2) Pencils
- (2) Wet erase markers
- (4) Markers (orange, blue, green, purple)
- Ziploc bag (for wet soil)
- Paper towels
- Water (8 oz)
- (2) 100 mL Graduated cylinders
- (4) 20 oz Cups (1) labeled A, (1) labeled B, and (2) unlabeled
- (2) 9 oz Cup with holes in bottom labeled A and B
- 9 oz Cup with no holes
- (4) 1 oz cups
- Potting soil
- (4) Coffee filters
- (25) Paperclips
- Dropper

Notebook Pages, Notepad Pages, and Picture Packet Page:

Technique

Graduated Cylinders

Graduated cylinders are used to measure volumes of liquids.

How to read a graduated cylinder:

1. Put your finger on the bottom of the dip also known as the meniscus.
2. Move your finger down to the next labeled number.
3. Count up to the meniscus.
4. The final volume is the sum of the labeled number and the counted number.

How much water is in each graduated cylinder?

1. [Graduated Cylinder A]: 88 mL
2. [Graduated Cylinder B]: 46 mL
3. [Graduated Cylinder C]: 74 mL
4. [Graduated Cylinder D]: 39 mL

Observations

- **Description of things using:**
 - Sight
 - Touch
 - Hearing
 - Smell
 - Taste

- **Inferences**
- **Opinions**
- **Incorrect Observations**

Observation: A description using your **5 senses**

Page 2, Picture Packet

It is recommended that instead of using this picture packet page that the lead write this chart on the board so students can refer to it while completing the Observation Activity on page 3 of their notebook.
Preparation:

SciTrek Lead:

1. Get the Observation Assessments from the classroom teacher and put them in the lead box.
2. Make sure volunteers are writing their name and group color on the whiteboard.
3. Make sure volunteers are passing out nametags.
4. Make sure volunteers are setting up for the initial observation. Details of how to do this are on a picture in the volunteer boxes.
5. If the classroom has a document camera, ask the teacher to use it for the introduction (page 1, picture packet), Technique Activity (page 2, student notebook), and the Observation Activity.
(page 2, picture packet and page 3, student notebook). If the classroom does not have a document camera, then tape the poster-size notebook pages to the front board.

6. It is recommended that you copy page 2 of the picture packet onto the board. This way students can look at this observation chart while they are doing the Observation Activity.

SciTrek Volunteers:
1. On the front whiteboard in the classroom, write your name and the color of the group (orange, blue, green, or purple) you will be working with.
2. Pass out student nametags.
3. Assemble the experimental set-up (shown in picture below as well as in color in the experimental set-up picture in your group box) on a tray.
 a. Fill four, 1 oz (small) cups with potting soil (make sure that all cups are filled to the top).
 b. Place a coffee filter inside each of the two labeled 9 oz (medium) cups with holes.
 c. Set the labeled medium cups inside the 20 oz (large) labeled cups and place them on the tray.
 d. Set two unlabeled large cups and one unlabeled medium cup (without holes) on the tray.
 e. Fill two graduated cylinders with 50 mL of water and set them on the tray.
4. Have notebooks and straws available to pass out.

![Experimental Set-Up Image]

Introduction:
(2 minutes – Full Class – SciTrek Lead)

If they have not done so already, have volunteers write their name and group color on the front whiteboard, and then get student nametags out of their group box and walk around the room quietly setting each student’s nametag on their desk. After, they should assemble the experimental set-up.

For UCSB Lead:
“Hi, we are scientists from UCSB and we want to show you what we do as scientists. We will show you an experiment and then you can make observations and design your own experiment to help answer the class question. We want to show you that you can do science and have fun.”

For Teacher Lead:
“I have asked some scientists from UCSB to come and help us with a long-term science investigation. We will make observations, come up with a class question, and you will design your own experiment to help answer the class question.”

Allow the UCSB volunteers to introduce themselves and share their majors.
Observation Assessment:
(5 minutes – Full Class – Given By Classroom Teacher Prior to SciTrek)

“Before we start with the module, we will determine how your ideas on observations are developing.” Pass out the Observation Assessment and a paperclip to each student and tell students to fill out their name, teacher’s name, and date at the top of the assessment. Remind the students that it is important that they fill out this assessment on their own.

Read the instructions to the students. Then read each of the statements and tell students to circle “observation” for statements that are observations or “not an observation” for statements that are incorrect observations or statements that cannot be observations. When students are finished, collect the assessments and the paperclip and verify that the students’ names are on the papers.

Module Introduction:
(5 minutes – Full Class – SciTrek Lead)

Show the students the picture of the landslide (page 1, picture packet), as shown on the right. Ask students, “What happened in this picture?” Students should reply that the hillside slipped down. Tell students that this is called a landslide. Ask students, “Have you ever seen a landslide before and if so, what were the weather conditions when the landslide occurred?” By the end of the conversation make sure that students understand that many landslides happen during rain or right after it has rained. Discuss with students why this might be, making sure by the end of the conversation they understand that adding water increases the weight of the soil. If students are struggling with this concept, have them imagine holding a dry sponge and then a wet sponge and asking them which is heavier. Additionally, ask them if they would be more likely to drop something light or something heavy when they’re holding it.

Tell students for this module we will explore the question: “What variables affect how much liquid a soil can absorb?” Ask the class, “Do you know what the word “absorb” means?” Make sure that by the end of the conversation, they understand that it means the amount of liquid that the soil can hold. Explain that since they will be dealing with liquids during this experiment, they will need to learn how to measure the volume of liquids.

Technique:
(13 minutes – Full Class – SciTrek Lead)

Have volunteers pass out a notebook to each student.

Have students fill out their name, teacher’s name, group color (color of their name on their nametag: orange, blue, green, or purple), and their volunteer’s name (volunteers’ names should be written on the board next to the group color they will be working with) on the front cover of their notebooks. If a student does not have a nametag, only have them fill out their name and teacher’s name on the cover of
their notebook. They will be placed in a group when the class divides into groups for observations and they can fill out their group color and volunteer at that point.

Tell the class that today they are going to work with a piece of scientific equipment called a graduated cylinder. Show the class the 500 mL graduated cylinder. Tell the class, “graduated cylinders are used to measure the volumes of liquids. Scientists read graduated cylinders by placing them on a flat surface and putting their eyes at the same level as the level of the liquid. They then read off the number on the graduated cylinder where the bottom of the liquid line is located. The liquid line will be curved; the curved liquid line is called the meniscus. The units on the gradated cylinder are in milliliters, which is abbreviated mL. You are going to practice reading graduated cylinders in your notebook which will prepare you to use them during your experiment.” Have the class say the word “milliliters” with you a couple of times to help them get used to it.

Tell students to turn to page 2 of their notebooks while you place a blank notebook under the document camera and turn to page 2. Read the directions aloud to the class. Ask students the following questions:

What do you think is the maximum amount of liquid that you could measure in the graduated cylinder on the sheet? (100 mL)
What does each of the large labeled lines on the graduated cylinder represent? (10 mL)
What do the medium lines on the graduated cylinder represent? (5 mL)
What do the smallest lines on the graduated cylinder represent? (1 mL)

Tell students to determine the amount of liquid in the graduated cylinder, they need to find the bottom of the meniscus. Have students put their finger on the meniscus in the first gradated cylinder and you do the same on the document camera for students to copy. From there, have students move their finger to the nearest labeled number that is below the meniscus. Then, have the students count by ones until they reach the level of the meniscus. Count aloud so students can follow along. Then have students add the amount they counted to the number their finger was on. This will give the amount of liquid in the graduated cylinder. Ask students, “How much liquid is in the first graduated cylinder?” Students should say that the graduated cylinder contains 88 mL of liquid and write that value on the line.

Have the students complete B-D by themselves. As the students are working, volunteers should walk around and help students that are struggling.

Once students have completed reading the graduated cylinders, have them share their results with the class. Once an answer is shared, have the rest of the class vote if they think that the answer is correct/incorrect using thumbs up/thumbs down for agree/disagree. When a class consensus has been reached, write the correct number on the notebook under the document camera.
Tell students now they know how to read a graduated cylinder, they can measure the amount of water that passes through the soil, which will help them to determine how water interacts with soil. Tell students that they are going to make some observations about a soil and water system. But before we can do this, we need to make sure that we understand observations.

Observation Activity:
(15 minutes – Full Class – SciTrek Lead)

If the chart from page 2 of the picture packet is not copied onto the board, then put page 2 of the picture packet under the document camera (shown below). Tell the students that scientists make many observations. Ask the class, “What is an observation? What are the types of things that you can record for an observation?” If they have trouble, show them an object and let them make observations. Help them realize that observations are descriptions of things using their five senses. As they come up with what they can use to make observations, record these on the chart. Then, write the definition of observation under the list and have the students tell you the definition a few times. Have students generate an observation about something in the classroom using each of their senses other than taste.
Ask the class, “Are there statements that are not observations?” Students should be able to generate opinions, incorrect observations, and inferences. Record these under “not observations” on the chart. Remind students that inferences are something that you think might be true about an object/system based on past experiences and evidence you’ve collected. For instance, in the mini module when they thought the object in the candleholder was a “candle” before it was eaten. Have students give you examples of statements that are opinions (Ex: chocolate chip cookies taste better than ice cream), incorrect observations, and inferences (Ex: the white lab coats are bought from Target). If they are unable to generate these categories or cannot give you an example, give them an example statement in each category and then have them identify the type of statement.

Have the volunteers pass-out a bendy straw, found in their group box, to each student.

Tell students they are now going to do an activity where they look at a list of possible observations about the object they just received (bendy straw). They will then decide if each statement is an observation or not an observation about the object.

Have students turn to page 3 of their notebooks and place a blank notebook under the document camera and turn to page 3. Have students fill in the blank in the observation definition at the top of the page. Then have them repeat the definition to you a few times.

Read the directions aloud to the class. Tell students we will go over each of the statements as a class. Read each of the statements to the students. For each of the statements, have a student share what they think the correct answer is and why. Then, have the class vote using thumbs up/thumbs down if they agree/disagree with the student’s reasoning. If many students in the class disagree with the response of the original student, have another student explain why they disagree. If needed, let them have “mini conferences” with the students that are sitting in their area. After the class has come to a consensus, tell students they will now circle the correct answer. Mark the correct answer on the class notebook for students to copy.
For each statement that is an observation, have students identify the sense (touch, taste, smell, hear, or see) that they used to classify the statement. Write down which sense students used in the margins. For each statement that is not an observation, have students identify why the statement is not an observation (incorrect observation, opinion, or inference). Write down why the statement is not an observation in the margins. Students do not need to write these in the margins in their notebook. See the example below for the student and lead pages.

Below are the answers to 1-7 on page 3 in detail.

Number 1: The object is lighter than a bowling ball.
Observation – With Sense (Comparison)

Is the statement an observation or not an observation?
Observation

What sense did you use to make this observation?
Touch

Number 2: The object is only one color.
Not an Observation – Incorrect with Sight

Is this statement an observation or not an observation?
Not an observation

Why is this statement not an observation?
The object is two colors and not one (Incorrect observation).

What sense did you use to tell this?
Sight
Number 3: The object is thicker than a broom handle.
Not an Observation – Incorrect with Sight (Comparison)

Is this statement an observation or not an observation?
Not an observation

Why is this statement not an observation?
The object is thinner than a broom handle, not thicker (Incorrect observation).

What sense did you use to tell this?
Sight

Number 4: The object is silly.
Not an Observation – Opinion

Is this statement an observation or not an observation?
Not an observation

Why is this statement not an observation?
This statement is an opinion. Some people might think that bendy straws are silly, but others might think they are sensible.

Number 5: The object has lines.
Observation – With Sight

Is this statement an observation or not an observation?
Observation

What sense did you use to make this observation?
Sight

Number 6: The object can be bent so both ends touch.
Observation – With Sense (Need to Test)

Is this statement an observation or not an observation?
If you have bent the straw so both ends touch, then the statement is an observation.
If you have not tested it then the statement is not an observation, it is an inference.

Note: Make sure that all students bend the object so that both ends touch making this statement an observation. Tell students that some inferences can be turned into observations by testing them.

What sense did you use to make this an observation?
Touch and sight

Number 7: The object came from the grocery store.
Not an Observation – Inference

Is this statement an observation or not an observation?
Not an observation

Why is this statement not an observation?
This statement is an inference because there is no way to tell if the object came from the grocery store. The grocery store does have straws, the straw could have come from the grocery store but it also could have come from a fast food restaurant.

Once students have completed the Observation Activity, see if they can give you one or two more observations about the object. While students are giving other observations, the volunteers should walk around and collect the straws from students and put them back in their group boxes.

Tell students, “We will now use the skills that we learned to make observations.” Ask students, “Do you remember the question the class will be investigating?” They should respond, “What variables affect how much liquid a soil can absorb?” If students do not remember, show them where to find it on the front of the notebook. Remind students that we are interested in this because it will help us learn about
landsides. Tell students they will explore one variable that might affect how much liquid the soil absorbs. Remind students that it is important to only generate observations and not inferences/opinions. Tell the class they will now get in their groups. Tell each colored group where to go and to bring their notebook.

If a student does not have a nametag, identify the group with the least number of students in it and write the student’s name on one of the extra nametags that are in the lead box using that color of marker.

Observations:

(20 minutes – Groups – SciTrek Volunteers)

Once the students come over to your group, have them sit in boy/girl fashion, collect their notebooks, and put them in your group box. Students will not need their notebooks until the next session. Verify the table is set up as described in the Set-Up Section.

As a group, have the students generate observations about the experimental set-up before they pour water into the cups. As the students make observations, record them on page 1 of the group notepad. Make sure that students measure the amount of water in the graduated cylinders (50 mL), the amount of potting soil (4 small cups total) that will be put into each cup as well as define the sizes of cups as small, medium, and large (see picture). This should take no longer than 6 minutes.

Make sure there is a coffee filter in both of the medium cups (9 oz) and then pour two small (1 oz) cups of potting soil into both cups. Then use the medium cup (without holes) to compact the potting soil that is in cup B. When you compact the potting soil remove the medium cup with holes from the large cup and place it on the table before compacting the potting soil (see picture). Place the medium cup B back into the large cup B. Leave the potting soil in cup A loose. Then pour the water (50 mL) from each of the graduated cylinders into the two medium cups at the same time.

Have the students generate observations about what is happening in the cup system and record them on page 2 of the group notepad. As soon as the water has passed through the potting soil (~2 minutes), students can move the cups that contain the wet potting soil into the two extra, large cups and then pour the water that passed through each of the cups into a graduated cylinder to determine the volume of water that passed through each. Ask students, “If we poured in 50 mL and less than 50 mL comes out of the soil, where did the rest of the water go?” Allow students to one-finger touch the potting soil. They should realize that some of the water stayed in the potting soil. Ask them, “Can we determine how much water stayed in the potting soil and if so how?” They should say that if you take the initial amount of water and subtract the water in the large cup you will get the amount of water that is in the potting soil. Do the math with the group to determine the amount of water each soil absorbed. Be sure that you are doing the appropriate form of subtraction as dictated by the classroom teacher. Students should find that the compact and loose soil both absorbed about the same amount of water.

If there is additional time, have students summarize what they saw and learned. Make sure that students know that for this experiment, the changing variable was soil compactness and they were learning how this variable affected the amount of water that the soil could absorb.

An example filled out initial observations is shown below.
Wrap-Up:
(5 minutes – Full Class – SciTrek Lead)

Have one student from each group share an observation with the rest of the class.

Review with the class what was in each cup and what happened to the water that was poured over the two cups. It is helpful to write loose and compact on the board and then write each groups data underneath.

Ask students, “Does soil compactness affect how much liquid a soil can absorb and what evidence do you have to support this?” The students should reply that although the two cups absorbed different amounts of water, they were fairly close to each other. The big difference between the two systems was that the water passed through the compact soil much slower than the loose soil. Discuss with students that groups that calculated that the compact soil absorbed more liquid may not have allowed the water to drip completely through the cup. By doing this, there will still be water above the soil rather than inside of the soil so the compact soil did not actually absorb more water than the loose soil.

Tell students that we now want to relate what they found back to landslides. Tell students to imagine that there are two hills, one with compact soil and one with loose soil and it rains on both of these hills for one hour. Ask students, “What happens to the amount of water absorbed by both of these hills?” Possible student response: the hill that has loose soil will absorb more water because the water will absorb faster into the loose soil before it runs off, while the hill that has compact soil will absorb less water because most of this water will run off into other areas before it can be absorbed by the compact soil. Ask students, “Which hill would be more likely to have a landslide and why?” Possible student response: the hill with loose soil will be more likely to have a landslide because it absorbs more water making it heavier.

Ask students, “What happens when it rains on both of these hills for multiple days?” Possible student response: while initially the hill with the loose soil will absorb more water, as it continues to rain the hill with the compact soil will absorb the same amount of water as the hill with loose soil. Ask students, “Which hill will now be more likely to have a landslide?” Possible student response: since both hills absorbed the same amount of water they will now both be approximately the same mass and therefore are equally likely to have a landslide.
Tell the students that they have taught you a lot about how the compactness of the soil affects water absorption and landslides. You now know that the more compact the soil, the longer the soil takes to absorb the water.

Tell the students that during the next session they will design an experiment to answer the class question: What variables affect how much liquid a soil can absorb?

Clean-Up:

1. Collect notebooks with attached nametags
2. Pour the wet soil into the Ziploc bag provided. Make sure to seal this bag so that water does not spill.
3. Put the used water, cups (make sure to stack), and graduated cylinder into the bucket.
4. Place all other materials in your group box and bring materials back to UCSB.

Day 2: Question/Materials Page/Experimental Set-Up/Procedure/Results Table

Schedule:

- Introduction (SciTrek Lead) – 7 minutes
- Question (SciTrek Volunteers) – 10 minutes
- Materials Page (SciTrek Volunteers) – 5 minutes
- Experimental Set-Up (SciTrek Volunteers) – 5 minutes
- Procedure (SciTrek Volunteers) – 20 minutes
- Results Table (SciTrek Volunteers) – 5 minutes
- Wrap-Up (SciTrek Lead) – 8 minutes

Materials:

- (4) Volunteer Boxes:
 - □ Student nametags
 - □ Student notebooks
 - □ Volunteer instructions
 - □ Volunteer lab coat
 - □ Materials pages (one for each possible variable, 3 total)
 - □ (2) Pencils
 - □ (2) Wet erase markers
 - □ Scotch tape

 Other Supplies:
 - □ (4) Large group notepads

 Lead Box:
 - □ (3) Blank nametags
 - □ (3) Extra student notebooks
 - □ Lead instructions
 - □ Soil water retention picture packet
 - □ Lead lab coat
 - □ Materials pages (one for each possible variable, 3 total)
 - □ Time card
 - □ (2) Pencils
 - □ (2) Wet erase markers
 - □ (4) Markers (orange, blue, green, purple)
 - □ Scotch tape
 - □ Scale
 - □ Vermiculite
Notebook Pages and Notepad Pages:

<table>
<thead>
<tr>
<th>Factor</th>
<th>Changing Variable</th>
<th>Measurement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Soil</td>
<td>Soil Amount</td>
<td>Liquid Amount (ml)</td>
</tr>
<tr>
<td>Liquid</td>
<td>Liquid Thickness</td>
<td>Liquid Amount (ml)</td>
</tr>
</tbody>
</table>

QUESTION

Question our group will investigate:
- If we change the **soil type**, what will happen to the amount of liquid that the soil absorbs?

Changing Soil Type
- Soil Amount: 1 small cup
- Liquid Amount: 100 mL
- Liquid Thickness: Thin

Soil Type:
- A) vermiculite
- B) large rocks
- C) sand
- D) small rocks
- E) bark

Experimental Set-up

Changing Variable: Soil Type

Control Values:
- Container Type / Cup
- Soil Amount: 2 small cups
- Liquid Amount: 100 mL
- Liquid Thickness: Thin

PROCEDURE

1. Add 2 small cups of vermiculite
2. Measure 100 mL of liquid
3. Use number line to find amount of liquid absorbed by soil
4. Use number line to find amount of liquid absorbed by soil

Question

Question our group will investigate:
- If we change the **soil type**, what will happen to the amount of liquid that the soil absorbs?

EXPERIMENTAL SET-UP

Changing Variable: Soil Type

Control Values:
- Container Type / Cup
- Soil Amount: 2 small cups
- Liquid Amount: 100 mL
- Liquid Thickness: Thin

Fill out the materials page with your SciTrek volunteer before moving onto the experimental set-up.
Preparation:

SciTrek Lead:
1. Make sure volunteers set out notebooks.
2. If the classroom has a document camera, ask the teacher to use it for the wrap-up discussion (page 3, picture packet). If the classroom does not have a document camera, then draw the two cups on the front board.
3. Have the scale and the vermiculite available to show students during the introduction.

SciTrek Volunteers:
1. Set out notebooks/nametags.

Note: If students are not in the classroom before SciTrek starts, notebooks should be set out where students should sit when they come into the classroom. If students are in the classroom before SciTrek starts, notebooks should be set out where students should sit during the module; they will move to these spots after the introduction.

Introduction:
(7 minutes – Full Class – SciTrek Lead)

If needed, while you are doing the introduction have volunteers set out the notebooks/nametags where they would like students to sit. Tell students that a notebook will be put on their desk, which is not their notebook and they should not move it.

Ask students, “What did we do and learn during our last meeting?” Possible student response: we did an experiment in which we observed water going through loose and compact potting soil. We learned that the loose potting soil allowed the water to pass through faster than the compact potting soil. But in the end, both the loose and compact potting soils absorbed approximately the same amount of water. Ask
the class, “What is the class question we will be investigating?” Students should reply, “What variables affect how much liquid a soil can absorb?”

Ask students, “Why might scientists study how much liquid a soil can absorb?” Students should explain that studying how much liquid a soil can absorb will help them understand the most likely conditions for landslides. For instance, the more water that the soil absorbs, the heavier the soil and the more likely a landslide.

Tell the students that one way scientists answer questions is by performing experiments; today they are going to pick a variable with their group to investigate. Make sure students understand that variables are parts of the experiment that can be changed. Tell students they can pick to explore if something about either the soil or liquid affects the amount of liquid that a soil can absorb. If they are interested in exploring how liquid affects the amount of liquid that a soil can absorb, they can manipulate the liquid thickness. If they choose to investigate liquid thickness they have to use medium rocks as their soil type, whereas all other groups will get to pick the soil type that they will use. Ask students, “What do you think the thickness of the liquid physically represents?” Make sure by the end of the conversation that students know that thick liquids are liquids like snow or mud that is coming in from other areas. If they are interested in exploring how soil affects the amount of liquid that the soil can absorb, they can manipulate either the soil type or the soil amount. If they change the soil amount, they will be able to use a scale to weigh the amount of soil they will use (show students the scale). If they change the soil type, they will get to choose from seven different soil types. One of the soil types that they will get to choose from is called vermiculite. Show students the vermiculite and have them say the word with you a few times. Tell students they will now vote in their groups about what changing variable they want to explore. This will let them determine the question for their experiment.

Note: It is important to “sell” all of the variables except for liquid thickness. Otherwise, students will all pick liquid thickness to investigate.

Question:

(10 minutes – Groups – SciTrek Volunteers)

Have students turn to page 4 of their notebooks. Then have them decide (by voting) if they are interested in investigating how the soil or the liquid affects the amount of liquid that soil can absorb. If there is a tie, then the volunteer will make the deciding vote. Once they have decided on the factor they will investigate, have students circle what they chose in their notebooks. Then have them decide what their changing variable will be. If they decide to investigate a soil factor, have them choose if their changing variable will be the soil amount or the soil type. If they decide to investigate a liquid factor, their changing variable will be liquid thickness. It is best if groups have different changing variables. The lead will help coordinate between groups to ensure there is a variety of changing variables. All experiments will measure the liquid amount that passes through the soil. They will then subtract the amount of liquid that passes through the soil from the initial liquid amount to determine the amount of liquid that the soil has absorbed.

Use their changing variable to generate the question that the group is going to investigate. Write the question in the group notepad, and have students copy it into their notebooks. An example filled out questions is shown below.

Select one student to read the group question during the wrap-up.
Materials Page:
(5 minutes – Groups – SciTrek Volunteers)

Get the materials page (shown below) that corresponds to the changing variable that your group selected and tape it into the group notepad. Have students use the materials page to determine the values for their changing variable and controls. When selecting the values of the changing variable, ask students, “Do you think a wide or a narrow range of values would help you more effectively answer your question?” Make sure they understand that a wide range of values will make it easier for them to see a difference in their results. For each changing variable value, write the student’s name that will be in charge of the trial next to the value.

For controls in which students can pick more than one value (soil type, soil amount, and liquid amount), have students discuss if the value that they select for their control would make it easier or harder to answer their question. For example, if students chose a liquid amount of 5 mL, ask them how this would affect answering their question. This might get them to realize that 5 mL is a very small amount of liquid, most likely resulting in the liquid being completely absorbed which would result in the same amount of liquid absorbed for all trials. If they decide a different control value is better, allow them to switch control values.

Make sure that students have picked liquid amounts that are within the limitations set on the materials page. Examples of all materials pages are shown below.
Experimental Set-Up:

(5 minutes – Groups – SciTrek Volunteers)

Turn to page 4 of the group notepad while students will still be working on page 4 in their notebook. Ask your group, “What did we decide was going to be the changing variable?” Record this on the group notepad. After, have students copy the changing variable into their notebooks.

Ask your group, “What controls and values did we select?” Write the control on the left side of the slash and the value of the control on the right side of the slash (Ex: soil type / sand). In addition, have students copy these into their notebooks. An example filled in experimental is shown below.

Changing Soil Amount

<table>
<thead>
<tr>
<th>Soil Type (circle one)</th>
<th>Potting Soil</th>
<th>Sand</th>
</tr>
</thead>
<tbody>
<tr>
<td>Liquid Amount (max 100 ml)</td>
<td>_____</td>
<td>_____</td>
</tr>
<tr>
<td>Liquid Thickness</td>
<td>Thin (level 0)</td>
<td>Thin (level 0)</td>
</tr>
<tr>
<td>Soil Amount</td>
<td>(max Potting Soil 100g, max sand 200g)</td>
<td>(potting soil, vermiculite, sand, bark, small rocks, medium rocks, and large rocks)</td>
</tr>
<tr>
<td>A)</td>
<td>_____</td>
<td>A)</td>
</tr>
<tr>
<td>B)</td>
<td>_____</td>
<td>B)</td>
</tr>
<tr>
<td>C)</td>
<td>_____</td>
<td>C)</td>
</tr>
<tr>
<td>D)</td>
<td>_____</td>
<td>D)</td>
</tr>
<tr>
<td>E)</td>
<td>_____</td>
<td>E)</td>
</tr>
</tbody>
</table>

Changing Soil Type

<table>
<thead>
<tr>
<th>Soil Amount (circle one)</th>
<th>1</th>
<th>2</th>
<th>3 small cups</th>
</tr>
</thead>
<tbody>
<tr>
<td>Liquid Amount (max 100 ml)</td>
<td>_____</td>
<td>_____</td>
<td>_____</td>
</tr>
<tr>
<td>Liquid Thickness</td>
<td>Thin (level 0)</td>
<td>Thin (level 0)</td>
<td></td>
</tr>
<tr>
<td>Soil Type</td>
<td>(potting soil, vermiculite, sand, bark, small rocks, medium rocks, and large rocks)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A)</td>
<td>_____</td>
<td>A)</td>
<td>_____</td>
</tr>
<tr>
<td>B)</td>
<td>_____</td>
<td>B)</td>
<td>_____</td>
</tr>
<tr>
<td>C)</td>
<td>_____</td>
<td>C)</td>
<td>_____</td>
</tr>
<tr>
<td>D)</td>
<td>_____</td>
<td>D)</td>
<td>_____</td>
</tr>
<tr>
<td>E)</td>
<td>_____</td>
<td>E)</td>
<td>_____</td>
</tr>
</tbody>
</table>

Changing Liquid Thickness

<table>
<thead>
<tr>
<th>Soil Type: Medium Rocks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Soil Amount: 1 small cup</td>
</tr>
<tr>
<td>Liquid Amount (max 50 ml)</td>
</tr>
<tr>
<td>Liquid Thickness (level 0 (thin), level 1, level 2, level 3, level 4, level 5, and level 0 (thin))</td>
</tr>
<tr>
<td>A)</td>
</tr>
<tr>
<td>B)</td>
</tr>
<tr>
<td>C)</td>
</tr>
<tr>
<td>D)</td>
</tr>
<tr>
<td>E)</td>
</tr>
</tbody>
</table>
Procedure:

(20 minutes – Groups – SciTrek Volunteers)

Tell students they will now generate a procedure for their experiment. Ask students, “What is a procedure?” Lead them to understand that it is a set of steps to conduct an experiment. Tell them that we will draw one picture for each procedural step. Ask students, “What is the first step in conducting our experiment?” Lead them to understand it is putting soil into the cups. Within the picture, write the soil type(s) and amount(s). Ask students, “What is the next step?” Lead them to understand it is pouring liquid over the soil. Within the picture, write the liquid amount and liquid thickness(es). Ask students, “What is the next step?” Lead them to understand it is measuring the water that comes out of the soil. Within the picture, write the word “measure.” Ask students “What is the last step?” Lead them to understand it is using a number line to determine the amount of liquid absorbed. Make sure to list all values of your changing variable for the step that includes your changing variable. Make sure all the students in your group have drawn and labeled a procedure step before moving onto the next step. An example filled out procedure is shown in the Experimental Set-Up Section.

Experimental Set-Up

<table>
<thead>
<tr>
<th>Changing Variable:</th>
<th>Soil type</th>
</tr>
</thead>
</table>

Controls (variables you will hold constant):

<table>
<thead>
<tr>
<th>Container Type</th>
<th>Soil Amount</th>
<th>Liquid Amount</th>
<th>Liquid Thickness</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2 small cups</td>
<td>100 mL</td>
<td>thin</td>
</tr>
</tbody>
</table>

Procedure:

1. **Step 1:**
 - Place soil into the cups.
 - Write soil type(s) and amount(s).

2. **Step 2:**
 - Pour liquid over the soil.
 - Write liquid amount and liquid thickness(es).

3. **Step 3:**
 - Measure the water that comes out of the soil.
 - Write “measure.”

4. **Step 4:**
 - Use a number line to determine the amount of liquid absorbed.
 - List all values of your changing variable for the step.

Example filled out procedure is shown in the Experimental Set-Up Section.
Results Table:
(5 minutes – Groups – SciTrek Volunteers)

Fill out the variables section of the results table while students fill out the same section in their notebooks. When writing the values, make sure that for controls, they only write the value of the control in the trial A box and then draw an arrow through the remaining trials’ boxes; for the changing variable, they write the value in each trial’s box. An example filled out results table is shown below.

If there is extra time, have the group close their notebooks and explain to each other what they will do for their experiment as well as predict what they think will happen and why. In addition, have students explain to you how their experiment will help them learn about landslides.

Wrap-Up:
(8 minutes – Full Class – SciTrek Lead)

Have one student from each group share the question that they will investigate. Tell students that during the next session, they will start their experiments and they will have to identify which of their soils absorbs the most liquid. Put page 3 of the picture packet under the document camera. Tell students that you poured 100 mL of water over both soils. Ask students, “Which soil absorbed more water?” Students should identify that the cup with less water in the bottom had the soil that absorbed more. Label the cups with “absorbed more” and “absorbed less.” Ask students, “How will they determine how much water the soil absorbed?” Get them to realize they will subtract the amount of water in the large cup from the water that was poured through. Do an example of the math with the students. See example below.
If there is additional time do the observation extra practice as a class, page 13, student notebook.

Tell students that you are excited to see their experiments next meeting because all of their experiments will help us be able to answer the question: What variables affect how much liquid a soil can absorb? Answering this question will help us learn about landslides.

Clean-Up:

1. Collect notebooks with attached nametags.
2. Place all materials into your group box and bring materials back to UCSB.

Day 3: Experiment/Graph/Results Summary

Schedule:

- Introduction (SciTrek Lead) – 5 minutes
- Experiment (SciTrek Volunteers) – 27 minutes
- Graph (SciTrek Volunteers) – 10 minutes
- Results Summary (SciTrek Volunteers) – 16 minutes
- Wrap-Up (SciTrek Lead) – 2 minutes
Materials:

(4) Volunteer Boxes:
- ☐ Student nametags
- ☐ Student notebooks
- ☐ Volunteer instructions
- ☐ Volunteer lab coat
- ☐ (8) Partial graph pieces
- ☐ (2) Pencils
- ☐ (2) Wet erase markers
- ☐ Scotch tape
- ☐ Paper towels
- ☐ (3) Water (8 oz) or requested liquids
- ☐ Ziploc bag (for wet soils)
- ☐ (5) 100 mL Graduated cylinders
- ☐ (10) 20 oz Cups (5) labeled A-E (5) unlabeled
- ☐ (5) 9 oz Cups with holes in bottom labeled A – E
- ☐ (2) 9 oz Cup with no holes (groups changing soil amount only)
- ☐ (5) 1 oz cups
- ☐ (6) Coffee filters
- ☐ (5) Dropper
- ☐ Requested soil(s)
- ☐ (2) Scales (groups changing soil amount only)

Other Supplies:
- ☐ (4) Large group notepads
- ☐ (2) Buckets with lids

Lead Box:
- ☐ (3) Extra student notebooks
- ☐ Lead instructions
- ☐ Soil water retention picture packet
- ☐ Lead lab coat
- ☐ Time card
- ☐ (8) Partial graph pieces
- ☐ (2) Pencils
- ☐ (2) Wet erase marker
- ☐ Scotch tape
- ☐ Paper towels
- ☐ (3) Water (8 oz)
- ☐ Ziploc bag (for wet soil)
- ☐ (2) 100 mL Graduated cylinders
- ☐ (2) 250 mL Graduated cylinders
- ☐ (10) 20 oz Cups (5) labeled A-E (5) unlabeled
- ☐ (5) 9 oz Cups with holes in bottom labeled A-E
- ☐ (3) 9 oz Cup with no holes
- ☐ (5) 1 oz cups
- ☐ (6) Coffee filters
- ☐ (5) Droppers
- ☐ Bag of 7 soil types (Potting soil, vermiculite, sand, small rocks, medium rocks, large rocks, bark)
Notebook Pages and Notepad Pages:

RESULTS Table

<table>
<thead>
<tr>
<th>Variables</th>
<th>Trial A</th>
<th>Trial B</th>
<th>Trial C</th>
<th>Trial D</th>
<th>Trial E</th>
</tr>
</thead>
<tbody>
<tr>
<td>Container Type:</td>
<td>Cup</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Soil Type:</td>
<td>Vermiculite</td>
<td>Rocks</td>
<td>Sand</td>
<td>Small Rocks</td>
<td>Bark</td>
</tr>
<tr>
<td>Soil Amount:</td>
<td>2 small cups</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Liquid Thickness:</td>
<td>thin (level 0)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Liquid Amount:</td>
<td>100 mL</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Data

<table>
<thead>
<tr>
<th>Trial Measurements/Observations</th>
<th>Trial A</th>
<th>Trial B</th>
<th>Trial C</th>
<th>Trial D</th>
<th>Trial E</th>
</tr>
</thead>
<tbody>
<tr>
<td>liquid absorbed (mL)</td>
<td>68 mL</td>
<td>10 mL</td>
<td>45 mL</td>
<td>10 mL</td>
<td>7 mL</td>
</tr>
<tr>
<td>liquid went slow</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>liquid was absorbed</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>liquid went fast</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>liquid was clear</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>liquid was cloudy</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

My experiment shows that soils with smaller pieces are more likely to have a landslide because bark (large pieces) absorbed the least at 7 mL and Vermiculite (small pieces) absorbed the most at 68 mL.
Preparation:

SciTrek Lead:
1. Make sure volunteers setting out notebooks.
2. If the classroom has a document camera, ask the teacher to use it for the introduction (page 4, picture packet). If the classroom does not have a document camera, then draw the example cup on the board. Have a graduated cylinder and a dropper available to show students during the introduction.

SciTrek Volunteers:
1. Set out notebooks/nametags.

Note: If students are not in the classroom before SciTrek starts, notebooks should be set out where students should sit when they come into the classroom. If students are in the classroom before SciTrek starts, notebooks should be set out where students should sit during the module; they will move to these spots after the introduction.

Introduction:
(5 minutes – Full Class – SciTrek Lead)

If needed, while you are doing the introduction have volunteers set out the notebooks/nametags where they would like students to sit. Tell students that a notebook will be put on their desk, which is not their notebook and they should not move it.

Ask the class, “What have we been working on the last two meetings and what real-life application does it have?” Possible student response: we have been exploring water and soil interactions and we found that the more compact the soil, the slower the water absorbs into the soil. This shows us that landslides are more likely to occur at the start of a rainstorm in loose soil than compact soil. They should also state they designed an experiment to test another variable that might affect the amount of liquid that the soil can absorb. Have each group tell you the variable that they are going to investigate.

Tell the class that today they will be working in their groups to complete their experiments using the procedures they developed last session.

Tell students that today they will be using graduated cylinders. Show students the graduated cylinder. Tell them they will need to fill the graduated cylinder to the correct amount; to do this they should put the graduated cylinder on a flat surface. They will then pour liquid into the cylinder until it is approximately 10 mL from the desired amount. At this point, they should add the remaining liquid drop-wise with a dropper. Show students the dropper. They should then verify the volume by making sure they are eye level with the liquid level and reading the graduated cylinder. When they are ready to pour their liquid over their soil, they should hold their cup in one hand and use the other to slowly pour the liquid over the soil. This will help them prevent spills.

Once they have poured the water through the soil, they will need to figure out how much liquid the soil absorbed. Have a discussion with students about what it means for a soil to absorb a liquid. By the end of the conversation, make sure students understand that absorb means that the soil takes in and holds onto the liquid. Show students the picture of the example cup (page 4, picture packet). Ask students, “What is the first step in carrying out your experiment?” Possible student response: we will fill their medium cups with the appropriate amount of the correct soil type. Draw soil in the medium cup on the picture. Then, ask students, “What will you do next?” Possible student response: we will fill their graduated cylinders with the appropriate liquid amount and pour the liquid over the soil. Draw water being poured over the soil.
soil on the picture and label the water 50 mL to indicate that 50 mL of water was poured over the soil. Ask students, “What do you expect to happen?” Possible student response: some of the water will be absorbed into the soil and the rest will go through the holes into the larger cup. Draw water sitting at the bottom of the large cup. Ask students, “What will you do with the water that is in the large cup?” Possible student response: we will measure it using the graduated cylinder. Label the water at the bottom of the large cup 23 mL to indicate that 23 mL of water has gone through the holes of the small cup and dripped into the large cup. Once students understand the process, ask them, “How will you figure out how much liquid was absorbed by the soil?” Possible student response: we will subtract the amount of liquid in the bottom cup from the amount of liquid that was poured over the soil. Perform the subtraction 50 mL-23 mL on the picture page, making sure that you are doing the appropriate form of subtraction as dictated by the teacher. Note: it does not matter what amount of water you put going in and coming out, however, it is best not to do a factor of 10 for the water going out so volunteers can see how to do the subtraction with students. See example below.

Tell students after they are finished with their experiment and recording their results, they will then use the data to make a graph to see how their changing variable has affected the amount of liquid a soil can absorb.

Tell the students that they will now start their experiments.

If needed, tell the students to get into their groups.

Experiment:
(27 minutes – Groups – SciTrek Volunteers)

Before students start their experiment, make sure that they have filled out the variables section of the results table on page 6.
Help students set up and complete their experiment. To help keep track of which graduated cylinder goes with each trial or how much liquid to add, you can write the trial letter or draw a line on the graduated cylinder using the wet erase pen that is used on the group notepads. Have each student be in charge of at least one of the trials. For each student’s trial, have them put a coffee filter and the appropriate type and amount of soil in the cup, fill the graduated cylinder, and measure the amount of liquid that goes through the system. Make sure the students pour the liquid over the soil slowly and carefully. Wait until the water is no longer dripping from the small cup into the large cup or let the experiment run for five minutes, whichever comes first, and then have students set the medium cup in an extra, unlabeled large cup and measure the amount of liquid that passed through the soil using a graduated cylinder. Have each student read their graduated cylinder and tell you their measurement and record these on page 5 of the group notepad in the bottom half of the picture of the large cup. Then have students copy the measurements onto page 6 of their notebook (see example group notepad below).

Ask students, “How will we figure out how much water the soil in each of the trials absorbed?” Possible student response: we can use a number line to find the difference between the initial amount of liquid we poured over the soil and the amount of liquid that is in the large cup (the amount of water that passed through the soil). As a group, do the math for each of the trials in the group notepad, making sure to use the appropriate subtraction method as dictated by the teacher. If more room is needed to do the math, use the backside of a notepad page. Students only need to record the liquid absorbed in their notebooks, not the math process to determine the amount.

Encourage students to make observations other than the amount of water passing through, such as liquid color, speed with which the liquid came through, texture of the soil, etc. These can be recorded in the results table under other observations. If your group changed liquid thickness, the higher level liquid thicknesses may not be able to pass through the soil to the large cup. If this is the case for your group, you should draw a picture diagram of your cup in the other observations section to remind your students which trials had liquid that sat on top of the soil. An example of what the picture might look like is shown on the right.
Graph:
(10 minutes – Groups – SciTrek Volunteers)

Pass out one partial graph piece to each student and have them fill out the piece for the cup they oversaw. There is an extra partial graph piece in the group box that you should use as an example. On the bottom line, have students write the value of their changing variable (Ex: sand), not the trial letter or the changing variable (Ex: B or soil type). This way when the pieces are rearranged, they will be able to see the values for each of the trials to help them identify any patterns. Have students draw a line across the column showing the appropriate amount of absorbed liquid as well as write in the numerical value of the amount of absorbed liquid on top of the line and then quickly shade below the line. Once each student has completed their graph piece, have students help you arrange the partial graph pieces so that they are in increasing order as done in the example below. In the example experiment discussed, the trials were graphed in the following order: C, A, E, D, B. Tape the partial graphs to the group notepad so that they look like a complete graph (see example group notepad below). When taping the graph pieces to the group notepad, make sure that each graph piece overlaps with the one next to it so that you only see the y-axis for the first graph pieces.
After the pieces of the graph are taped into the group notepad, ask students, “What is our changing variable?” Record this answer for the x-axis title and have students copy this into their notebooks.
Results Summary:
(16 minutes – Groups – SciTrek Volunteers)

Have students use their graph to look for a pattern in their data. Challenge students to think about how their changing variable would affect landslides.

When writing their results summary (page 7, student notebook), make sure students start the statement with a claim (a statement that can be tested) about the trend or pattern in their data. If the values of their changing variable have an order (Ex: 20 mL → 50 mL → 100 mL), then that variable affected the amount of liquid the soil could absorb. If, on the other hand, there was no order for their changing variable values (Ex: 50 mL → 100 mL → 20 mL) and the difference between the liquid absorbed for each trial is small, then that variable did not affect the amount of liquid the soil could absorb. The more liquid the soil absorbs the more likely a landslide. Have students generate a claim that focuses on what their experiment implies about landslides and allows them to make predictions. An appropriate claim could be: soils with smaller pieces are more likely to have landslides. This is an appropriate claim because it allows the students to make a prediction about what would happen if new values of their changing variable were introduced and identify which value would be most likely to cause a landslide.

After generating a claim about their experiment, write the word “because” and follow it with supporting data. Their supporting data should include at least two pieces of data, typically the minimum and maximum amount of liquid absorbed. Make sure students are using their changing variable values (not trial letters) and specific measurements to support their claim. The supporting data for the previously mentioned claim would be: because bark (large pieces) absorbed the least amount of liquid at 7 mL and vermiculite (small pieces) absorbed the most at 68 mL of liquid.

Results summaries are still valid, and important, if they show that the changing variable tested did not affect the amount of liquid the soil could absorb. Even if their results summary is contrary to what you think, have students make a claim based solely on their data. Help students copy this statement into their notebook.

Once students have filled out their results summary, have them fill in the sentence frame (page 8, student notebook): “I acted like a scientist when.” Each student’s response should be unique and specific. They should NOT write, “when I did an experiment,” because this is general and applies to all of the students in the class. If students are having trouble with this sentence frame, ask them what they did during each SciTrek session.

If there is extra time, talk to your students about how their results relate to landslides.

Wrap-Up:
(2 minutes – Full Class – SciTrek Lead)

Tell students that during the next session they will make a poster, which they will use to present their findings to the class. These posters will help us learn about what variables affect the amount of liquid a soil can absorb.

Clean-Up:
1. Collect student notebooks with attached nametags.
2. Pour the wet “soil” into the Ziploc bag provided. Make sure to seal this bag so that water does not spill.
3. Put the used liquid, cups (make sure to stack), and graduated cylinders into the buckets.
4. Place all other materials into your group box and bring materials back to UCSB.
Day 4: Poster Making

Schedule:

Introduction (SciTrek Lead) – 2 minutes
Experimental Discussion (SciTrek Volunteers) – 17 minutes
Poster Making (SciTrek Volunteers) – 36 minutes
Wrap-Up (SciTrek Lead) – 5 minutes

Materials:

(4) Volunteer Boxes:

☐ Student nametags ☐ (2) Pencils ☐ Poster parts pack
☐ Student notebooks ☐ (2) Paperclips (Scientists’ names, question,
☐ Volunteer instructions ☐ (2) Wet erase markers experimental set-up,
☐ Volunteer lab coat ☐ Highlighter procedure, results table,
☐ Poster diagram ☐ Scissors results graph, results
☐ Appropriate sticker for how summary, (6) “I acted like a
to present graph (changing soil scientist when,” (6) picture
 type/liquid thickness or soil spaces)
 amount)

Other Supplies:

☐ (4) Large group notepads ☐ Poster paper tube

Lead Box:

☐ (3) Extra student notebooks ☐ (2) Sticker sets for how to ☐ (2) Highlighters
☐ Lead instructions present graph (changing soil ☐ Scissors
☐ Soil water retention picture type/liquid thickness or soil ☐ (2) Glues
 packet
☐ Lead lab coat ☐ (2) Pencils
☐ Poster diagram ☐ (5) Paperclips
☐ Time card ☐ (2) Wet erase markers
☐ Scotch tape
☐ (1 each color) Poster part
 packet

Preparation:

SciTrek Lead:
1. Makes sure volunteers setting out notebooks
2. Ask the classroom teacher for a place to leave the student posters in the classroom.

SciTrek Volunteers:
1. Set out notebooks/nametags.

Note: If students are not in the classroom before SciTrek starts, notebooks should be set out where students should sit when they come into the classroom. If students are in the classroom before SciTrek starts, notebooks should be set out where students should sit during the module; they will move to these spots after the introduction.
Introduction:

(2 minutes – Full Class – SciTrek Lead)

If needed, while you are doing the introduction have volunteers set out the notebooks/nametags where they would like students to sit. Tell students that a notebook will be put on their desk, which is not their notebook and they should not move it.

Ask the class, “What is the class question that we have been investigating?” Students should reply, “What variables affect how much liquid a soil can absorb?” Ask the class, “Why are we interested in this question?” Possible student response: learning about water and soil interactions can help us learn about landslides. Tell students that today they will be making posters to present their findings to the class. This presentation will be their chance to tell the class what their group has discovered about the class question. Tell students they should write as neatly as possible on the poster parts so that the other class members can read their poster.

Tell the groups if they have not filled in the results summary or “I acted like a scientist when,” they should finish these before starting on their poster.

In addition, tell students that before they start their poster, they should explain their experiment to their volunteer along with their results and how their experiment relates to landslides. They should try to do this without looking at their notebooks.

Experimental Discussion:

(17 minutes – Groups – SciTrek Volunteers)

If students have not finished their results summary or “I acted like a scientist when,” then have them complete these before discussing their experiment or starting their poster.

Have your students explain their experiment as well as their findings to you without looking at their notebooks. Ask each student in the group a question about the experiment. Questions can be about what the students did as well as what they learned. Also try to ask students to make predictions using their data about changing variable values that they did not test.

Poster Making:

(36 minutes – Groups – SciTrek Volunteers)

Pass out the writing portions (general poster parts and “I acted like a scientist when”) and have students write their names on them and complete them. In addition, have each student write their name on the scientists’ names poster part. Use the following guidelines when assigning poster parts:
Number of Students in Group	Poster Division
4 | Each student gets an “I acted like a scientist when” and picture space. |
1. Question and Experimental Set-Up
2. Procedure
3. Results Graph*
4. Results Summary
Student that finishes 1st completes the results table (not presented) |
5 | 5. Question
6. Experimental Set-Up
7. Procedure
8. Results Graph*
9. Results Summary
Student that finishes 1st completes the results table (not presented) |
6 | 1. Question
2. Experimental Set-Up
3. Procedure (Presents 1st half of procedure)
4. Results Table (Presents 2nd half of procedure)
5. Results Graph*
6. Results Summary
*Give the results graph to the student that is most confident in presenting. |

Once students have finished the writing section(s), have them draw a picture of their experiment or how they acted like a scientist.

In the students’ notebooks, highlight and number the section(s) that they will present. The parts should be numbered as follows: 1) scientists’ names, 2) question, 3) experimental set-up, 4) procedure, 5) results graph, and 6) results summary (see example below). Students will NOT present the results table or “I acted like a scientist when” parts from their poster. If a student is presenting multiple sections, use the paperclips in your group box to clip together the sections that they are reading so that when presenting, it will be easy to flip back and forth between pages.

Ex: Highlighted/Numbered Notebook Pages
Place one of the following sentence frame stickers on the notebook page of the student that is presenting the results graph (page 7, student notebook).

Changing Soil Type/Liquid Thickness:

When the ________ was ________, the soil absorbed ________ mL.

Changing Soil Amount:

The cup with ________ of soil absorbed ________ mL.

Then practice reading the five sentences with that student. For the graph above, the first sentence would be: When the soil type was bark the soil absorbed 7 mL. Make sure you fill in the first blank in the first sentence frame (Ex: soil type) for the student but leave the “changing variable value” and “measurement” blanks empty. An example of a sentence for a group that changed soil amount would be: The cup with 20 g of soil absorbed 50 mL. Leave the “changing variable value” and “measurement” blanks empty.

Ask the student, who is presenting the procedure to tell you in their own words what they did in each step and then you (the volunteer) write their words on each picture to form complete sentences. In the procedure below, the boxed words were added to the student notebook. Therefore, the student would read:

Procedure:

Step 1: Pour 2 small cups of A) vermiculite, B) large rocks, C) sand, D) small rocks, and E) bark in medium cup.

Step 2: Pour 100 mL of thick (level 1) liquid over soil.

Step 3: Measure the amount of liquid in large cup.

Step 4: Use number line to find the amount of liquid absorbed by the soil.

Students should not copy the boxed words onto the poster part.
As soon as students have completed some of their pieces, start gluing them onto the large poster paper, in landscape orientation, exactly as they are arranged in the example below. Do not allow students to glue the poster parts on the poster. Do not wait until students have completed all the pieces to start gluing them onto the poster.

Once the poster is complete, have students start practicing for the presentation. Make sure that students read from their notebooks instead of off the poster.
Ask your group a few questions about their poster. Have them use their findings to predict what would happen to the amount of water absorbed for other changing variable values that they did not perform but are related to their experiment. In addition, have them state how their findings apply to landslides. For instance, if the group’s results summary was, “My experiment shows that soils with smaller pieces are more likely to have a landslide because bark (large pieces) absorbed the least amount of liquid at 7 mL and vermiculite (small pieces) absorbed the most at 68 mL,” ask the group, “If you tested extra large rocks, how much water would it absorb and would it make it more or less likely to have a landslide?” They should be able to predict that it would absorb ~5 mL and would be less likely to have a landslide.

If there is additional time, tell students that the other students will ask them questions during their poster presentations. Tell them that they should think about what questions they will be asked and then think of the answers to those questions so that they will be prepared during their presentation.

Wrap-Up:
(5 minutes – Full Class – SciTrek Lead)

Ask students the following questions:
- How did you act like a scientist during this project?
- What did you do that scientists do?

After having a discussion about how they acted like scientists and talking about how everyone does things that scientists do in their everyday lives, tell students that they will present their findings during the next session and that you are looking forward to hearing about all of their experiments.

Clean-Up:

1. Collect notebooks with attached nametags.
2. Leave posters in the classroom.
3. Place all others materials into your group box and bring materials back to UCSB.

Day 5: Poster Presentations

Schedule:

- Introduction (SciTrek Lead) – 2 minutes
- Practice Posters (SciTrek Volunteers) – 15 minutes
- Poster Presentations (SciTrek Volunteers/SciTrek Lead) – 41 minutes
- Wrap-Up (SciTrek Lead) – 2 minutes

Materials:

- (4) Volunteer Boxes:
 - □ Student nametags
 - □ Volunteer lab coat
 - □ Highlighter
 - □ Student notebooks
 - □ (2) Pencils
 - □ (6) Sharpened SciTrek pencils
 - □ Volunteer instructions
 - □ (2) Paperclips
 - □ (all same color)
Lead Box:
- ☐ (3) Extra student notebooks
- ☐ Lead instructions
- ☐ Soil water retention picture packet
- ☐ Lead lab coat
- ☐ Time card
- ☐ (2) Sticker sets for how to present graph (changing soil type/liquid thickness and soil amount)
- ☐ (2) Pencils
- ☐ (2) Wet erase markers
- ☐ (4) Paperclips
- ☐ (2) Highlighters
- ☐ Scotch tape

*Student posters should already be in the classroom.

Picture Packet Page:

<table>
<thead>
<tr>
<th>Group</th>
<th>Potting Soil</th>
<th>40</th>
<th>35</th>
<th>60</th>
<th>75</th>
<th>100</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Soil Amount (g)</td>
<td>37</td>
<td>66</td>
<td>98</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>Summary:</td>
<td>the more soil the more water the soil absorbs</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Group</th>
<th>Sand</th>
<th>40</th>
<th>97</th>
<th>125</th>
<th>155</th>
<th>200</th>
</tr>
</thead>
<tbody>
<tr>
<td>Changing Variable</td>
<td>Soil Amount (g)</td>
<td>14</td>
<td>35</td>
<td>47</td>
<td>68</td>
<td>70</td>
</tr>
<tr>
<td>Summary:</td>
<td>trend agrees with graph, sand absorbs less water than potting soil for a given weight</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Group</th>
<th>Liquid Thickness</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Liquid Absorbed (mL)</td>
<td>30</td>
<td>41</td>
<td>83</td>
<td>72</td>
<td>87</td>
</tr>
<tr>
<td>Summary:</td>
<td>the thicker the liquid the more liquid the soil absorbs</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Group</th>
<th>Soil Type</th>
<th>bark</th>
<th>large rocks</th>
<th>medium rocks</th>
<th>small rocks</th>
<th>sand</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Liquid Absorbed (mL)</td>
<td>29</td>
<td>43</td>
<td>64</td>
<td>69</td>
<td>76</td>
</tr>
<tr>
<td>Summary:</td>
<td>the smaller the pieces the more water the soil absorbs for a given volume of soil</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Page 5, Picture Packet

Preparation:

SciTrek Lead:

1. Make sure volunteers are setting out notebooks.
2. Assign volunteers a new group to work with. This will allow students to explain what they found and practice their poster with a new person.
3. If the classroom has a document camera, ask the teacher to use it for the Notes on Presentations (page 5, picture packet). If the classroom does not have a document camera, then write the class question on the board, “What variables affect how much liquid a soil can absorb?” Leave enough room to record student findings under the question.
4. Organize posters so experiments featuring the same changing variable are presented back to back and that posters are presented from easiest to understand to hardest to understand (suggested order: soil amount, liquid thickness, soil type).
SciTrek Volunteers:
1. Today you will initially work with a new group of students. When your original group presents their poster, go up with them.
2. Set out notebooks/nametags.
3. Have pencils ready to distribute to your group after the poster presentations.

Note: If students are not in the classroom before SciTrek starts, notebooks should be set out where students should sit when they come into the classroom. If students are in the classroom before SciTrek starts, notebooks should be set out where students should sit during the module; they will move to these spots after the introduction.

Introduction:
(2 minutes – Full Class – SciTrek Lead)

Tell students that today they will present their posters to the class. Inform students that this is a common practice in science. Scientists go to conferences where they present posters about the experiments they conducted. At these presentations, other scientists give them feedback on their experiments, which allows them to return to the lab with new ideas for future experiments.

Tell students today they will work with a new volunteer. They will have 15 minutes to discuss their experiment/results and practice presenting their poster with their group. While discussing their experiment/results, students should not look at their notebooks or poster. Remind students to read from their notebooks when presenting. Tell students that after practicing, they will return to their normal classroom seats.

Practice Posters:
(15 minutes – Groups – SciTrek Volunteers)

Have volunteers rotate groups.

If the posters are not already in order, the lead should organize posters so experiments featuring the same changing variable are presented back to back and that posters are presented from easiest to understand to hardest to understand (suggested order: soil amount, liquid thickness, soil type).

Have students explain what they did and what they learned from their experiment, without looking at their notebooks, if possible. Ask students questions to make sure that they understand what they did during their experiment. Make sure that you also have them use their results to predict what would happen for other systems that they did not test. Remind them to think about patterns or trends that they saw for their own results and apply these trends to make predictions about how much liquid a soil can absorb. For instance, if the group’s changing variable was liquid thickness ask them, “How much liquid would pass through the cup if you used level 7 liquid (this would be a thickness that they did not test)?” Possible student response: more liquid would be absorbed with level 7 liquid and more liquid would sit on top of the soil. Try to make sure that each student in your group answers one question.

Once the group has an understanding of their experiment, have them practice their poster presentation, making sure they are reading the poster parts in the correct order (scientists’ names, question, experimental set-up, procedure, results graph, and results summary). Make sure each student’s part is highlighted in their notebook. If students are reading from multiple pages, use a paperclip to clip these pages together to make it easier for them to flip back and forth. Remind students to read from their notebook rather than from their poster.
If there is additional time, tell the group that the other students will ask them questions during their poster presentations. Tell them that they should think about what questions they will be asked and then think of the answers to those questions so that they will be prepared during their presentation.

Do not let poster practice go over 15 minutes.

Poster Presentations:
(41 minutes – Full Class – SciTrek Volunteers/SciTrek Lead)

Have students return to their original class seats. Ask the class, “What is the question we have been working on solving?” Students should reply, “What variables affect how much liquid a soil can absorb?” Ask the class, “Why are we interested in answering this question?” Possible student response: if we can determine the variables that affect the amount of liquid a soil can absorb, we will be able to understand and predict landslides. Tell students that during the presentations you are going to take notes. Turn to page 5 in the picture packet. Tell them that they need to tell you each group’s changing variable after the group says their question so that you can record it. In addition, you will record the values of the changing variable and the measurements when the group presents their graph.

After each presentation, students will be given the opportunity to ask scientific questions to the presenting group to help them determine if/how the variable investigated affected how much liquid the soil could absorb. Tell them these questions are important because they will have to summarize for you what they learned from the group, so you can record it on the group notes. Therefore, their questions should focus on helping them be able to summarize the group’s findings. Tell them that if they ask a scientific question during the presentation, they will get a SciTrek pencil at the end of the presentations.

Volunteers should make sure that students are quiet and respectful when other groups are presenting. When your group is presenting, go to the front of the room with them; prompt students if they do not know who talks next and remind them to read from their notebooks.

During the student question time, the lead and/or volunteers should ask at least one question. Examples of possible questions are: “How do you know...?” or “Is there anything else you can do to get more information about your question?” or “Can you predict what the amount of liquid absorbed would be if you used (untested changing variable value)?” Each group should answer approximately five questions (one question per student).

When students are done asking questions, have them summarize what the group found. This is challenging for 2nd graders, therefore, you need to break it down into the following five questions. 1) What was the group’s changing variable? 2) (point to the notes where you recorded the values of the changing variable) What pattern do you see in the (insert changing variable)? 3) (point to the notes where you recorded liquid absorbed) What pattern do you see in the liquid absorbed? 5) What does this tell us about landslides? 5) Can someone put what we learned into a sentence? If they are still having trouble give them the sentence frame “As the (insert changing variable) (insert pattern) the soil absorbed (more or less liquid) and the chance of having a landslide (increases or decrease)” Ex: As the piece size of the soil gets smaller the soil absorbs more water and the chance of having a landslide increases. Once they have generated a summary, record this on the notes page.

An example filled out Notes on Presentations is shown below.
After all poster presentations have been given, ask the class, “What did we learn about how much liquid a soil can absorb?” Have them summarize the class findings. The highlights from many experiments are shown below. Do not expect students to know highlights from experiments that were not run.

- The greater the soil amount, the more liquid can be absorbed.
- The thicker the liquid thickness, it seems like the more liquid the soil absorbs due to the math. However, students will notice not all of the liquid is being absorbed by the soil. Instead, the thick liquids sit on top of the soil. To bring this back to landslides, talk about how the thick liquid could represent snow or mud and these would not absorb into the soil but they would add weight to the soil. Therefore, they could cause either the land to slide or the thick materials to slide. For instance, with snow this is called an avalanche.
- The more “space” between the pieces of a given soil type, the less liquid that will be absorbed.

When summarizing experiments, use student-collected data and not what they should have found from the list above. Ask students, “What are the conditions that would allow a soil to absorb the most liquid?”

- Soil compactness: either loose or compact
- Soil amount: as much as possible
- Liquid thickness: Liquid level 6
- Soil type: vermiculite or sand

If no one in the class did experiments on one of the variables above, then they will not know how that variable affects soil absorbency and do not expect them to tell you which value to use. Tell students they have taught you a lot about soil absorbency.
Wrap-Up:
(2 minutes – Full Class – SciTrek Lead)

Tell the students that the volunteers that have been working with them are undergraduate and graduate students that volunteer their time so that they can do experiments. Have the students say thank you to the volunteers. This is the last day with their volunteers, therefore, they should say goodbye to them. Tell students that you will be back one more time.

Tell students to remove the paper part of their nametag from the plastic holder and that they can keep the paper nametag, but they need to give the plastic holder back to their volunteer.

Have volunteers pass out pencils to the students that asked questions. If a student did not ask a question during the poster presentations, have them ask/answer a question about the experiments before the volunteer gives them a pencil.

Clean-Up:

1. Collect the plastic nametag holders and allow students to keep the paper part of the nametag.
2. Collect student notebooks.
3. Leave posters in the classroom.
4. Place all other materials into your group box and bring materials back to UCSB.
5. If you will not be attending the Tie to Standards day, remove all materials from your lab coat pockets, remove your nametag, unroll your lab coat sleeves, and put your lab coat into the dirty clothes bag at UCSB.

Day 6: Tie to Standards

Note: We highly recommend that teachers complete the Observation Assessment prior to Day 6 of the module. The suggested times in the lesson plan below are assuming that the Observation Assessment was given prior to SciTrek arriving.

Schedule:

Times if teacher gave assessment prior to SciTrek:
Tie to Standards (SciTrek Lead) – 60 minutes

Times if SciTrek must give assessment:
Observation Assessment (SciTrek Lead) – 5 minutes
Tie to Standards (SciTrek Lead) – 55 minutes

Materials:

Lead Box:
☐ (3) Extra student notebooks
☐ Student notebooks
☐ Lead instructions
☐ Soil water retention picture packet
☐ Lead lab coat
☐ Observation Assessment (if teacher did not take assessments then (25) assessments and (25) rubber bands)
☐ Time card
☐ (2) Pencils
☐ (2) Wet erase marker
☐ Paper towels
☐ (2) Water (8 oz)
☐ Ziploc bag (for wet soil)
☐ (4) 100 mL Graduated cylinders
☐ (4) 20 oz Cups
☐ (4) 9 oz Cups with holes in bottom
☐ (3) 1 oz cups
☐ Bag of 4 soil types (vermiculite, sand, small rocks, and large rocks)
☐ (8) Precut coffee filters
☐ (2) Droppers
I acted like a scientist when I used a graduated cylinder to measure the liquid absorbed by the soil.

TIE TO STANDARDS

1. Absorb: The ability to hold liquid.

2. 100 ml of water was poured over each cup, circle the soil that absorbed the most liquid.
 - [] A
 - [] B

3. The [] soil the more likely a landslide.
 - [] Lighter

4. Read finding 1 from the poster.

5. Is there a limit to the amount of water that soil can absorb?
 - [] Yes
 - [] No

6. 1 small cup of potting soil can hold [] mL of water.

7. How much water can 2 cups of soil absorb? [] mL

8. Adding water to soil makes the soil []
 - [] Lighter

9. The [] water in the soil the more likely a landslide.
 - [] More
 - [] Less

10. Read finding 2 from the poster.

Possible Factor: Soil Type

11. Label the following soil types from least to most absorbent. Label the least absorbent soil as 1 and the most absorbent soil as 3.
 - [] Small Rocks
 - [] Large Rocks
 - [] Sand

12. Piece [] size affects how much water a soil type can absorb.

13. Sand holds [] water than large rocks making wet sand [] than wet large rocks which results in wet sand having landslides than wet large rocks.
 - [] More
 - [] Less

14. Material [] absorbency affects how much water a soil type can absorb.
 - [] More
 - [] Less

15. Vermiculite holds [] water than sand making wet vermiculite [] than wet sand, which results in wet vermiculite having landslides than wet sand.
 - [] More
 - [] Less

16. Read finding 3 from the poster.

17. Another factor that affects landslides is the [] slope of the soil.

18. Draw a picture where a landslide is more and less likely to happen.

19. The [] the slope the more likely a landslide.

20. Read finding 4 from the poster.

22. Another factor that affects landslides is the ability of soil to [] stick to itself.

23. The more plants the [] soil sticks to itself, the [] the soil.
 - [] More
 - [] More

24. Read finding 5 from the poster.
Preparation:

SciTrek Lead:

1. Get the Observation Assessments from the classroom teacher and put them in the lead box.
2. If the teacher is not leading the Tie to Standards Activity, do the following:
 a. Give the teacher an extra student notebook and have them fill it out with their students to follow along.
 b. Collect the teacher’s lab coat and put it in the lead box.
3. Pass out notebooks to students or get the classroom teacher to pass them out.
4. If the classroom has a document camera, ask the teacher to use it for the Tie to Standards Activity (pages 8-11, student notebook and pages 6-13, picture packet). If the classroom does not have a document camera, then tape the poster-size notebook pages to the front board.
5. Assemble the Tie to Standards set-up. Use the following steps to help you with the set-up:
 a. Fill the 4 graduated cylinders with 50 mL of water each.
 b. Place a pre-cut coffee filter circle inside each of the four medium (9 oz) cups with holes.
 c. Place the medium cups inside the large (20 oz) cups.
 d. Pour three small (1 oz) cups (completely full and level) of each of the following soil types into the four cups with coffee filters: sand, small rocks, large rocks, and vermiculite.
6. Tape the findings poster to the front board. Make sure that the findings are covered.
7. Put your lab coat in the lead box at the end of the day.

Observation Assessment:

(5 minutes – Full Class – Given By Classroom Teacher Prior to SciTrek)

“Before we start our activity today, we will determine how your ideas on observations are developing. One of the ways that we get program funding is by demonstrating program effectiveness. Therefore, we need you to do your best on the assessment.” Pass out the Observation Assessment and a rubber band to
Tell students to fill out their name, teacher’s name, and date on the top of the assessment. Remind the students that it is important that they fill out this assessment on their own.

Read the instructions to the students. Then read each of the statements and tell the students to circle “observation” for statements that are observations or “not an observation” for statements that are incorrect observations or statements that cannot be observations.

Tie to Standards:
(60 minutes – Full Class – SciTrek Lead)

Review: (7 minutes)

Tell the class that you enjoyed their poster presentations the last time you were there. Today we are going to revisit some of the variables that they have been investigating and look at a few other variables to determine how they affect how much liquid soil can absorb. But before we do that, we will review what absorb means, how to tell which soil absorbs the most liquid, and what this implies for landslides. Have the students turn to page 8 of their notebooks. Place the class notebook on the document camera and turn to page 8.

Have students fill in the blank for the definition of absorb for question 1 (Absorb: the ability to **hold** liquid). Then, have them look at the cups and identify which cup absorbed the most liquid. Make sure that students understand that the more liquid in the large cup, the less liquid that the soil absorbed.

Ask students, “What causes landslides to happen?” Help them realize that the heavier the soil is, the more likely a landslide and have them circle the correct word in question 3 (The **heavier** the soil the more likely a landslide). Remove the clips showing finding 1 on the findings poster.

Finding 1: The heavier the soil the more likely a landslide.

I acted like a scientist when____ I used a graduated
cylinder to measure the liquid _
absorbed by the soil._

TIE TO STANDARDS

1. Absorb: The ability to **hold** liquid.

2. 100 ml of water was poured over each cup, circle the soil that absorbed the most liquid.

A

B

3. The heavier the soil the more likely a landslide.

4. Read Finding 1 from the poster.
Note: Finding 1 is not completely correct. More accurately it should be, the greater the change in mass the more likely a landslide.

Possible Factor 1: Liquid Amount (20 minutes)

Tell students that we will now look at different variables and see how they would affect landslides. The first variable that we will discuss is a variable that no one tested. We will look at how changing the water amount affects how much 1 small cup of potting soil can absorb. Tell students to look at the graph on page 9. Show them that the x-axis shows the amount of water that was poured over the potting soil. Ask students, “How much water was poured over the potting soil for trial 1?” Students should reply, “10 mL.” On the first cup, (page 6, picture packet) draw 10 mL of water going into the soil. Show them that the y-axis shows the amount of water that was absorbed by the soil. Ask students, “How much water was absorbed by the soil for the first trial?” Students should reply, “10 mL.” Write 10 mL with an arrow pointing to the soil to indicate the 10 mL of water that was absorbed by the soil. Ask students, “If we poured 10 mL of water over the soil and 10 mL of water was absorbed, how much water would be in the large cup under the small cup?” (0 mL)

Repeat this process for the other 4 trials. An example of what page 6 of the picture pack will look like when it is filled out is shown above.

Ask students, “Why did the first two cups absorb all the water and the last three cups did not?” Possible student response: the soil was not fully wet in the first two cups but now is fully wet.

Ask the class question 5, “Is there a limit to the amount of water that soil can absorb?” By the end of the conversation, make sure that students understand that the answer is yes. Have the class fill in the blank for question 6 (1 small cup of potting soil can hold 25 mL of water). Ask students question 7, “How much water can 2 cups of soil absorb?” Make sure by the end of the conversation they realize that two cups of soil could hold 50 mL because we have doubled the amount of soil that we used to make the graph.

Have students look at the picture on page 9 and put the full-size colored picture under the document camera (page 7, picture packet, shown below). Ask students, “Can someone explain what they think happened?” By the end of the conversation, make sure students understand that the soil absorbed all of
the water that it could and could not hold any more water. Since the soil did not have a cup under it to collect the extra water, the extra water pooled on the top of the soil.

Tell students that we are now going to apply what we know to landslides. “Pretend that you are standing on a hill and it starts raining. You take a soil sample and find the mass. Will that soil sample have a greater mass when it is wet or dry?” Possible student response: it will have a greater mass when the soil is wet. Have students circle the correct word in question 8 (Adding water to soil makes the soil heavier.) Ask students, “How does this apply to landslides?” Possible student response: the heavier the soil the more likely a landslide and have them circle the correct word in question 9 (The more water in the soil the more likely a landslide.) “Pretend that it continues to rain for the next 20 hours. During this time you keep taking soil samples. Does the mass of the soil samples keep going up?” Students should realize that after the soil is saturated with water (completely full) the soil will not be able to hold any more water and therefore, the mass will not increase anymore. In addition, any more water/rain in that area will run off/pool in another area because it will not be able to be absorbed by the soil.

Ask students, “When it rains what are the chances that a landslide will happen and why?” Possible student response: as it rains, the chances of a landslide happening go up because the mass of the soil goes up.

Tell students that we have now learned that adding a liquid to soil increases the chance of a landslide. However, there is also a limit to the amount of liquid that a soil can absorb. Remove the clips showing finding 2 on the findings poster.

Finding 2: Adding a liquid to soil increases the chance of a landslide. There is a maximum amount of liquid that soil can absorb.

An example of this page in the student notebook can be seen above.
Possible Factor 2: Soil Type (13 minutes)

If a group tested soil type, ask students, “Can someone predict which of the soil types (small rock, large rocks, and sand) will be the least absorbent, which types will be the most absorbent, and why?” Do not have students write their predictions in their notebook. You can write the class predictions in the class notebook. If no group tested soil type, do not have students make a prediction. After, have a SciTrek volunteer help you pour 50 mL of water through each of the three soil types. Make sure that the liquid is poured over the soils at the same time. Have students observe what happens. Ask students, “Did the soil that absorbed the most liquid have the most or the least water in the large cup?” Students should reply, “The least water.” Then, have students put the soil types in order from least absorbent (3) to most absorbent (1) for question 11 (large rocks (least absorbent - 1), small rocks, and sand (most absorbent - 3)). If needed, show students picture packet page 8 (shown below left), showing the same experiment with the water poured back into the graduated cylinders so that they can more easily see the amount that was in the large cup.

Ask students, “Do different soil types absorb different amounts of water?” Students should reply, “Yes.” Ask students, “What pattern do you notice about the amount of water that the soil can absorb?” Possible student response: the larger the piece size of the soil, the less the soil absorbs. Record piece size for question 12. Ask students, “If you add the maximum amount of water that each soil type can absorb, which of the four soil types would have the largest weight change and why?” Possible student response: the sand because it has the smallest pieces and therefore can absorb the most water. Then ask students, “Which soil type would be the most likely to have a landslide?” Student should reply, “Sand.” Have students circle the correct answers for question 13.

Have the students look at the two pictures on page 10 and show students the corresponding colored pictures (page 9, picture packet, shown above right). Ask students, “Can someone describe the objects to me?” They should describe the first object as a sponge and the second object as a rock. Ask students, “Are the objects approximately the same size?” Students should reply, “Yes.” Ask students, “If you poured water over each of the objects, what would happen?” Possible student response: water will be absorbed
by the sponge but would just run off of the rock. Tell students that this shows us that the other factor that affects the amount of water that soil can absorb and is known as **material absorbency**. Record this answer for question 14. Ask students, “Do small rocks, large rocks, and sand have the same material absorbency and do they have a low or high absorbency?” Possible student response: all of those soil types have similar material absorbency and the materials absorbency is low. If a group tested soil type and used vermiculite, ask students, “Do you know any soils that have a very large material absorbency?” (Vermiculite) If no group worked with this substance, show students the vermiculite and tell them that it has a high material absorbency. Tell students that you want to confirm that material absorbency affects the amount of liquid a soil can absorb. Ask the class, “Which soil, sand, small rocks, or large rocks, has about the same piece size as vermiculite?” Students should reply, “Sand.” Tell the class that you will now pour 50 mL of water over the vermiculite to see what happens. Pour the water over the vermiculite and have students make observations and then compare back to the sand cup.

Ask students, “If you add the maximum amount of water that sand and vermiculite can absorb, which of the soils would have the largest weight change and why?” Possible student response: the vermiculite because it has the largest material absorbency. Then ask students, “Which soil type would be the most likely to have a landslide?” Students should reply, “Vermiculite.” Have students circle the correct answers for question 15.

Tell students that they have now taught you that soil types are very different from each other because of the size of the pieces in the soil as well as the material absorbency. Remove the clips showing finding 3 on the class poster.

Finding 3: The smaller the piece size and the larger the material absorbency the more liquid the soil can absorb therefore, the more likely a landslide.

An example of this section in the student notebook can be seen below.
Note: Question 15 is not completely correct. If you put the wet vermiculite and the wet sand on a scale, the wet vermiculite will weigh less than the wet sand. However, the change in mass for the vermiculite will be greater than the change in mass for the sand, because it absorbed more water making it more likely for a landslide.

Other Possible Factors (14 minutes)

Have the students turn to page 11 of their notebook. Turn the class notebook to page 11. Ask students, “If you were standing on the field at their school, would you be worried about a landslide and why or why not?” Possible student response: I would not be worried because the field is flat and landslides are more likely to occur on sloped surfaces. Have students fill in slope for question 17. Have students complete the pictures showing a house position whose residents should worry about landslides and a house whose residents would not worry about landslides. Then have them fill in the blank in question 19 (The steeper the slope the more likely a landslide).

Tell students we have now learned another important variable about landslides. That the steeper the slope, the more likely it is to have a landslide. Remove the clips showing finding 4 on the class poster.

Finding 4: The steeper the slope, the more likely a landslide.

Show students page 10 of the picture packet (shown below on the left). Ask students, “Do the two hills have approximately the same slope?” Students should reply, “Yes.” Then, ask students, “Which of the hills is more likely to have a landslide and why?” By the end of the conversation make sure that they understand that the hill with plants on it is less likely to have a landslide because the roots of the plants will hold the soil in place. If student are struggling to understand this ask students, “When you pull a plant out of the ground do you only get the plant?” Make sure by the end of the conversation that students know that dirt is usually stuck to the roots when a plant is pulled from the ground, therefore, the roots help hold the soil together.

Page 10, Picture Packet

Other Possible Factors:

17. Another factor that affects landslides is the ____ of the soil.
18. Draw a picture where a landslide is more and less likely to happen.
19. The ____ the slope the more likely a landslide.
20. Read Finding 4 from the poster.
22. Another factor that affects landslides is the ability of soil to stick to _____________.
23. The more plants the _______ the soil sticks to itself, the _______ the soil
 More likely a landslide.
24. Read Finding 5 from the poster.
Have students draw in the roots of the plants in question 21. Tell students that another factor that affects landslides is called soil consistency. Soil consistency is the ability of a soil to stick to itself. Have students fill in question 22. Ask students, “Do plants affect the soil consistency and why?” Possible student response: plants increase the soil consistency because they hold the soil together. Have students circle the correct answers in question 23. An example of this section in the student notebook is shown above on the right.

Tell students we have now learned another important variable about landslides, the weaker the soil consistency, the more likely a landslide. Remove the clips showing finding 4 on the class poster.

Finding 4: The weaker the soil consistency, the more likely a landslide.

Note: In this section you can relate fires to landslides. If you are in the Santa Barbara area you can talk about the Thomas Fire and the Montecito landslide that happened after. The fire killed all of the plants which was one of the factors that lead to the Montecito landslides.

Possible Ways to Prevent Landslides (6 minutes)

Tell students that you know that water amount, particle size, material absorbency, slope, and soil consistency all affect if a landslide will happen. Tell students that one field of science is called engineering and these types of scientists try to solve problems. One of the problems that engineers have tried to solve is how to stop landslides. We are now going to look at two solutions that engineers came up with.

Have students turn to page 12 of their notebook and put page 11 of the picture packet (below left) on the document camera. Ask a student to describe the top picture and tell you how this might stop a landslide. By the end of the conversation make sure that students have described the picture and talk about how this idea would work because the sloped section is only very small so even if there were a landslide, it would only be in very small area (one section of the stairs). If students have not brought up the word terracing tell students that this idea is called terracing. This means that the ground is graded so that it is sloped and then flat, making stair like structures in the ground. Ask students, “Which factor this method tries to solve?” Students should reply, “Slope.” Have them fill this in for question 25.
Have students look at the bottom picture on page 11 of the picture packet (above left). Tell students that this picture shows another idea that engineers came up with. Tell students that this picture was taken in Santa Barbara. Ask students, “Does Santa Barbara usually look like this? Students should reply, “No.” Have them describe the picture and tell you how this might stop a landslide. By the end of the conversation make sure students have talked about how replacing potting soil with rocks increases the piece size and therefore the soil will not retain as much water. In addition, the plants would help increase the soil consistency by holding the rocks together. Ask students, “Which factor this method tries to solve?” (soil type/soil consistency). Have them fill this in for question 26.

An example of this section in the student notebook can be seen above on the right.

Tell students that they have taught you a lot about landslides and you now know when they are more likely to happen as well as some ways to try to prevent them. Tell students that they can keep their SciTrek notebook and that you have enjoyed working and learning with them and that SciTrek will be back later in the year to run another module.

Clean-Up:

1. Leave notebooks with students.
2. Place material in your group box and bring materials back to UCSB.
3. Remove all materials from your lab coat pockets, remove your nametag, unroll your lab coat sleeves, and put your lab coat into the dirty clothes bag at UCSB.
Extra Practice Solutions:

Module Extension
Other Ways Water Changes the Earth

If you would like to expand on the module by talking to students about other ways that water shapes the land and how engineers try to prevent it you can have the following discussion with students. Feel free to use any picture of a river and of wave damage. If you would like the pictures shown below, e-mail scitrekelementary@chem.ucsb.edu and these pictures will be sent to you.

Tell the students that we have been focusing on landslides. One of the variables that affects landslides is water. However, landslides are only one of the ways that water can change the shape of the land. Ask students, “Can anyone tell me of any other situations or ways that water can change the shape of the land?” Talk to students about how rivers and the ocean shape the land and how humans try to prevent unwanted shaping of the land.
Rivers shape the land through three different methods: erosion, transportation, and deposition. **Erosion** occurs when the land is worn down where a river flows over it. **Transportation** occurs when the river moves rocks through the water from one place to another. **Deposition** is the step where the rocks are deposited into another spot. Depending upon what happens through each step and how much rock is moved, different landforms form around the river. Rivers tend to form V shaped valleys. The mountains in areas where rivers have shaped the land are pointed. **Human prevention** of rivers changing the land occurs through building levees or walls to keep water from going in certain areas. Many times these levees are built so that they are only used when the river gets too high and if they were not there, water would flood the area. Rivers also deposit sediments into areas which boats need to travel. When this happens humans drudge, or use a large shallow ship, to remove the sediment.

The ocean shapes the land through three different methods: erosion, transportation, and deposition. **Erosion** occurs when the waves hit the side of a cliff taking away soil and rocks. **Transportation** occurs when the waves/tides move soil/sand to other areas. **Deposition** occurs when the soil and sand are deposited either on the ocean floor or on another beach. **Human prevention** of waves changing the land occurs when sea walls are built so that the waves cannot go over them. Another method is to line softer material, like sand, with rocks so the waves hit the harder material instead of the softer material. In areas where humans do not think they can stop the erosion, they will build buildings on stilts so that if the hillside does erode, the house is still attached to the stilts. The waves also deposit material like sand into unwanted areas. For instance, sand is always being deposited in the Santa Barbara harbor, and just like for rivers, Santa Barbara drudges the harbor to remove the unwanted sand.