Group Color:___________________
Subgroup Number:___________________

How Science Works

Grade 4

Module 1

Class Question:

Scientist (Your Name):___

Teacher’s Name:__

SciTrek Volunteer’s Name:_____________________________________
VOCABULARY

Science: The study of the material world using human reason. The scientific method is the way humans reason and apply logic to data to help gain knowledge of the world.

- Observation: A description using your five senses. This could include contents, mass, size, color, temperature, smell, texture ...
- Opinion: Something you believe or feel. Not a fact or observation.
- Inference: A guess based on past experiences.
- Testable Question: A question for which an experiment can be designed to answer.
- Non-Testable Question: A question for which an experiment cannot be designed to answer. For example, questions involving things that cannot be measured/observed or things that are not well defined/opinions.
- Experimental Set-Up: The materials, changing variable, and controls that are needed for an experiment.
- Experiment: A test or trial to discover something unknown.
- Procedure: A set of steps to conduct an experiment.
- Controls: The variables that are not changed in an experiment.
- Changing Variable (Independent Variable): The variable that is purposely changed in an experiment.
- Results/Data (Dependent Variable): The measurements/observations of the experiment, which are influenced/determined by the changing variable.
- Prediction: What you expect to happen based off of previous measurements/observations.
- Scientific Practices: A series of activities that scientists participate in to both understand the world around them and to communicate their results with others. (The specific practice worked on in this module is procedures.)
- Technique: A method for a specific task.
- Contents: Materials that are inside of the bottle besides the solution.
- Conditions: Other variables outside of the bottle that may affect the solution.
- Aquatic: Plants and/or animals that live in the water.
- Solution: Two things mixed together that look like one.
OBSERVATIONS

Contents: Materials that are inside of the bottle besides the solution.

Example: Aquatic Plant

Conditions: Other variables outside of the bottle that may affect the solution.

Example: In the Dark

<table>
<thead>
<tr>
<th>Bottle 1</th>
<th>Bottle 2</th>
<th>Bottle 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Contents:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Conditions:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Color of Solution at Start of Experiment:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Color of Solution at End of Experiment:</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Describe what happened to the solution over the course of 24 hours:

Bottle 1: ___

__

Bottle 2: __

__

Bottle 3: __

__
VARIABLES

<table>
<thead>
<tr>
<th>Variable</th>
<th>How will changing this variable affect the color of the solution?</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Experimental Considerations:

1. You will only have access to the materials on the materials page.
2. The liquid must remain the original blue solution.
3. You cannot design an experiment that you know will kill/hurt an animal.
4. Only one animal per bottle.
5. You will only get four bottles (containing original solution) per experiment.

Changing Variable (Independent Variable): ________________________________

Discuss with your group how you think your changing variable will affect the color of the solution.

QUESTION

Question our group will investigate:

- If we change the ____________________________,
 insert each changing variable (independent variable)
 what will happen to the ____________________________?
 insert what you are measuring/observing (dependent variable)

SciTrek Member Approval ____________________________

Get a materials page from your SciTrek volunteer and fill it out before moving onto the experimental set-up.
EXPERIMENTAL SET-UP

Determine the values of your changing variable (example: animal type) from the materials page and write the values (example: fish) for your four trials under each bottle.

Changing Variable:

| : | : | : | : | : |
| : | : | : | : | : |

Controls (variables you will hold constant):

Determine the variables that you will hold constant and indicate the specific value you will use in all your trials (control/value, example: solution type/original).

Solution Type	Original	Solution Type	Original
:	:	:	:
/	/	/	/

SciTrek Member Approval____________________
PROCEDURE

Procedure Note:
Make sure to include all values of your changing variable(s) in the procedure. (Example, for a group that decided to change solution type one step would be: get 4 small bottles with solution type A) original, B) red solution, C) yellow solution, D) orange solution and label them.)

1. __
 __
 __
 __

2. __
 __
 __
 __

3. __
 __
 __
 __

4. __
 __
 __
 __

5. __
 __
 __
 __

In your procedure underline controls, circle changing variables, and box data collection.
SCIENTIFIC PRACTICES

Procedures

Directions: Fill in the missing definition.

- Procedure: __
 __

A complete procedure MUST have:

- All values of the __________________________ and the _________________________.

- What __________________________ will be collected (measurements/observations).

- The steps listed in the order that they will be completed.

A complete procedure MUST NEVER have:

- ______________________ or irrelevant information.

- ______________________ about the experiment.

- ______________________ values of controls or the changing variable.
QUESTION
If we change the ball temperature what will happen to the height the ball bounces?

EXPERIMENTAL SET-UP

<table>
<thead>
<tr>
<th>Changing Variable:</th>
<th>Trial A</th>
<th>Trial B</th>
<th>Trial C</th>
<th>Trial D</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ball Temperature:</td>
<td>30 °C</td>
<td>40 °C</td>
<td>50 °C</td>
<td>60 °C</td>
</tr>
</tbody>
</table>

Controls (variables you will hold constant):

<table>
<thead>
<tr>
<th>Ball Material</th>
<th>Rubber</th>
</tr>
</thead>
<tbody>
<tr>
<td>Release Height</td>
<td>3 m</td>
</tr>
<tr>
<td>Ball Mass</td>
<td>623 g</td>
</tr>
<tr>
<td>Ball Circumference</td>
<td>88 cm</td>
</tr>
<tr>
<td>Ground Type</td>
<td>Cement</td>
</tr>
<tr>
<td>Ball Release</td>
<td>Drop</td>
</tr>
</tbody>
</table>

Directions:
Step 1: Read each statement and underline controls, circle changing variables, and box information about data collection.
Step 2: Circle yes if the statement could be a correct step for a procedure about the question and experimental set-up above. If not, circle no.

Could this be a procedure step?

1. Get four 623 g rubber balls with circumferences of 88 cm. Yes No
2. Heat rubber balls to temperatures of A) 30°C, B) 40°C, C) 50°C, D) 60°C. Yes No
3. Measure and observe. Yes No
4. Heat ball C to 50°C. Yes No
5. Heat rubber balls to different ball temperatures. Yes No
6. Measure how high each ball bounces on the cement. Yes No
7. Drop the boring ball from a height of 3 m. Yes No

Underline controls, circle changing variables, and box data collection.
Directions: Read the following procedure that is based on the question and experimental set-up on page 8 and underline controls, circle changing variables, and box data collection. If any controls are missing or incorrect, add the correct values to the procedure. Remove any extra or irrelevant information from the procedure by crossing it out. If any steps are out of order, draw an arrow (↔) to indicate the correct order.

PROCEDURE

1. Get four rubber balls with circumferences of 88 cm.

2. Heat balls to a temperature of A) 30°C, B) 40°C, C) 50°C, D) 60°C.

3. Drop each ball.

4. Hold each ball at a height of 3 m over gravel.

5. Pass the ball back and forth with one other person.

6. Measure how high each ball bounces.

7. Have fun.
RESULTS
Table

Fill out the chart for each of your trials. For the variables that remain constant, write the value in trial A and then draw an arrow through each box indicating that this variable is a control.

<table>
<thead>
<tr>
<th>Variables</th>
<th>Trial A</th>
<th>Trial B</th>
<th>Trial C</th>
<th>Trial D</th>
</tr>
</thead>
<tbody>
<tr>
<td>Solution Type:</td>
<td>Original</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Time:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bottle Size:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Animal Type:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Plant Type:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Light Amount:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Solution Color: (Initial)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Predictions

<table>
<thead>
<tr>
<th>Predicted Final Color of Bottle: (Circle One)</th>
<th>Trial A</th>
<th>Trial B</th>
<th>Trial C</th>
<th>Trial D</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blue</td>
<td>Blue</td>
<td>Blue</td>
<td>Blue</td>
<td>Blue</td>
</tr>
<tr>
<td>Green</td>
<td>Green</td>
<td>Green</td>
<td>Green</td>
<td>Green</td>
</tr>
<tr>
<td>Yellow</td>
<td>Yellow</td>
<td>Yellow</td>
<td>Yellow</td>
<td>Yellow</td>
</tr>
</tbody>
</table>

Data

<table>
<thead>
<tr>
<th>Final Observations:</th>
<th>Trial A</th>
<th>Trial B</th>
<th>Trial C</th>
<th>Trial D</th>
</tr>
</thead>
<tbody>
<tr>
<td>Solution Color:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The independent variable is the changing variable and the dependent variables is the final observations.
RESULTS
Summary

My experiment shows ___

__
__
__

I acted like a scientist when __

__

TIE TO STANDARDS

1. Fill out the following table. First predict the color of the bottle based on the following contents/conditions. After each bottle is shown, record the actual bottle color. (y=yellow, g=green, b=blue)

<table>
<thead>
<tr>
<th>Experiment Number</th>
<th>Bottle Contents</th>
<th>Bottle Conditions</th>
<th>Predicted Color</th>
<th>Actual Color</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Snail</td>
<td>24 Hours Light</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Frog</td>
<td>24 Hours Light</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Fish</td>
<td>24 Hours Light</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Aquatic Plant 1</td>
<td>24 Hours Light</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Aquatic Plant 2</td>
<td>24 Hours Light</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

2. From the chart above, what do the yellow/green bottles have in common?

__
3. Did all of the bottles change color? □ yes □ no

4. If you answered NO, why did some of the bottles remain blue?

5. Fill out the following table. First predict the color of the bottle based on the following contents/conditions. After each bottle is shown then record the actual bottle color. (y=yellow, g=green, b=blue)

<table>
<thead>
<tr>
<th>Experiment Number</th>
<th>Bottle Contents</th>
<th>Bottle Conditions</th>
<th>Predicted Color</th>
<th>Actual Color</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Snail</td>
<td>24 Hours Dark</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Frog</td>
<td>24 Hours Dark</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Fish</td>
<td>24 Hours Dark</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Aquatic Plant 1</td>
<td>24 Hours Dark</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Aquatic Plant 2</td>
<td>24 Hours Dark</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

6. What does the color of the bottles tell us about animals in the dark?

7. What does the color of the bottles tell us about plants in the dark?

8. Use the graph below to answer the following questions about carbon dioxide.

Carbon Dioxide Levels in the Atmosphere

a. What information is plotted on the x-axis? __________________________

b. What information is plotted on the y-axis? __________________________

c. Does the level of carbon dioxide change over time? □ yes □ no

d. Circle the area(s) on the graph that do not fit the general trend, or that show the greatest change.

e. Summarize what the graph tells us about the carbon dioxide levels in the atmosphere.

 Carbon dioxide levels in the atmosphere __________________________

 __

 __.
9. What are 3 things that could contribute to the increasing amounts of carbon dioxide in the atmosphere?

10. Would there be carbon dioxide on the planet if humans did not exist?

☐ yes ☐ no

11. Have humans changed the amount of carbon dioxide that is produced each year?

☐ yes ☐ no

12. What are 2 things that humans do to decrease the amounts of carbon dioxide they produce?

EXTRA PRACTICE

Procedures

QUESTION

If we change the jam type what will happen to the number of ants on each index card?

EXPERIMENTAL SET-UP

Changing Variable: Trail A Trail B Trail C Trail D
Jam Type: Strawberry Raspberry Blackberry Boysenberry

Controls (variables you will hold constant):

<table>
<thead>
<tr>
<th>Jam Amount</th>
<th>100 g</th>
<th>Jam Brand</th>
<th>Albertsons</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time</td>
<td>3 Hours</td>
<td>Distance From Anthill</td>
<td>50 cm</td>
</tr>
<tr>
<td>Container Type</td>
<td>Index Card</td>
<td>Ant Type</td>
<td>Argentine Ants</td>
</tr>
</tbody>
</table>

Directions:

Step 1: Read each statement and underline controls, circle changing variables, and box information about data collection.

Step 2: Circle yes if the statement could be a correct step for a procedure about the question and experimental set-up above. If not, circle no.

1. Put 100 g of Albertsons brand A) strawberry, B) raspberry, C) blackberry, D) boysenberry jam onto each index card. Yes No

2. Put the yummy Albertsons blackberry jam on index card C. Yes No

3. Put the index card 50 cm away from the Argentine anthill. Yes No

4. Make observations about the experiment. Yes No

5. Put 100 g of Albertsons brand strawberry jam onto index card A. Yes No

6. Count the number of Argentine ants on each index card after 3 hours. Yes No

7. Put 100 g of different jam types onto each index card. Yes No

Underline controls, circle changing variables, and box data collection.
CROSSWORD PUZZLE

Directions: Fill out the following crossword puzzle using the clues below. The list of words used for the word search can be found on the vocabulary page of your notebook (pg. 1).

Across
6) “Under the light” or “in the dark” are examples of __________ outside of the bottle
7) You designed an __________ to help answer the class question
9) The final color of the solutions are the __________ for this experiment
12) In this experiment, we will see how your __________ will affect the color of the solution

Down
1) Opinions, ________, and incorrect information should not be included in a procedure
2) Noticing that the plant is floating in the solution is an example of an __________ made during this experiment
3) Things you can change in an experiment
4) The values of your ________ are not changed in an experiment
5) Plants and/or animals that live in the water
8) A set of steps to conduct an experiment
10) Something that is inside the bottle
11) Observations or measurements collected in an experiment
SciTrek is an educational outreach program that is dedicated to allowing 2nd - 12th grade students to experience scientific practices firsthand. SciTrek partners with local teachers to present student-centered inquiry-based modules that not only emphasize the process of science but also specific grade level NGSS performance expectations. Each module allows students to design, carryout, and present their experiments and findings.

For more information, please feel free to visit us on the web at http://www.chem.ucsb.edu/scitrek/ or contact us by e-mail at scitrekadmin@chem.ucsb.edu.

SciTrek is brought to you by generous support from the following organizations:

UCSB karisma FOUNDATION SOUTH COAST SCIENCE PROJECT

If you would like to donate to the program or find out how you can get your company’s logo on our notebooks please contact scitrekadmin@chem.ucsb.edu.