Group Color:	Orange	
Subgroup Number: _	1	
Team/Subgroup Symbol:	NaHCO3	<u> </u> O

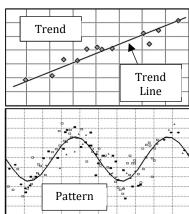
How Science Works

Grade 6

Module 2

class Question: What variables affect the temperature change of the chemical reaction?

Scientist (Your Name): EXAMPLE Notebook


Teacher's Name:

SciTrek Volunteer's Name:

VOCABULARY

Science: The study of the material world using human reason. The scientific method is the way humans reason and apply logic to data to help gain knowledge of the world.

- **Observation:** A description using your five senses. This could include contents, mass, size, color, temperature, smell, texture ...
- **Opinion:** Something you believe or feel. Not a fact or observation.
- Inference: A guess based on past experiences.
- **Testable Question:** A question for which an experiment can be designed to answer.
- Non-Testable Question: A question for which an experiment cannot be designed to answer. For example, questions involving things that cannot be measured/observed or things that are not well defined/opinions.
- **Experimental Set-Up:** The materials, changing variable, and controls that are needed for an experiment.
- **Experiment:** A test or trial to discover something unknown.
- **Procedure:** A set of steps to conduct an experiment.
- **Controls:** The variables that are not changed in an experiment.
- **Class Control:** A control that everyone in the class has the same value for.
- **Team Control:** A control that everyone in a team has the same value for, but values vary for different teams within a class.
- **Subgroup Control:** A control that everyone in a subgroup has the same value for, but values vary for different subgroups within a team.
- Changing Variable (Independent Variable): The variable that is purposely changed in an experiment.
- **Results/Data (Dependent Variable):** The measurements/observations of the experiment, which are influenced/determined by the changing variable.
- **Prediction:** What you expect to happen based off of previous measurements/observations.
- Scientific Practices: A series of activities that scientists participate in to both understand the world around them and to communicate their results with others. The specific practice worked on in this module is analyzing and interpreting data.
- **Technique:** A method for a specific task.
- **Conclusion:** A claim supported by data.
- **Claim:** A statement that can be tested. The explanation of the data, the first part of a conclusion.
- Data: Evidence collected from experiment(s) (measurements or observations); the second part of a conclusion.
- **Analysis:** A scientific practice involving examining data critically and looking for patterns and trends.
- **Trend:** When data changes in one general direction; can go up <u>or</u> down.
- **Trend Line:** A line drawn on a graph to represent the direction of a trend
- Pattern: When data repeats in a predictable manner; can go up, down, and up again.
- **Chemical Reaction:** A process where one or more substances are altered into one or more different substances. Evidence of a chemical reaction can include: formation of a gas, and/or a change in color, smell, or temperature.
- o Graduated Cylinder: A piece of laboratory equipment used to measure the volume of a liquid.
- o Beaker: A piece of laboratory equipment used to contain chemicals and conduct chemical reactions.
- **Tare:** To zero the scale.
- **Heat:** A form of energy associated with the movement of particles in a material (also called "thermal energy"). When two systems are in contact, heat flows from the hotter system to the cooler system.
- Kinetic Energy: Energy of motion.
- **Temperature:** A physical property which measures the kinetic energy of particles in a substance; the faster the particles are moving, the higher the temperature.
- **Median:** The middle number in a series of measurements.
- Range: The difference between the biggest and smallest measurements.

OBSERVATIONS

Experimental Set-Up:

Formula	Substance Name	Physical Description	Amount
NaHCO3	Sodíum hydrogen carbonate	White, powdery, solid	2.4 g
Nacl	Sodíum chloríde	White, grainy, solid	3.9 g
CaCl2	Calcium chloride	white, ball shaped, solid	6.0 g
H ₂ 0	water	Clear, colorless, líquíd	50 ML

Other aspects of experimental set-up:

Initial Water Temperature: <u>19.2°C</u>	
Graduated cylinder	Scale
Beaker	Thermometer
Stír plate	4 weigh boats
Stír bar	Plastic lid

Describe what happened during the experiment.	Bubble (gas) formed
Pour all substances together	
and stir	
Beaker got warm and	
solution made a lot of bubbles	Líquíd – Mílky Whíte
Temp Max: 29.0°C	White
Temp Change:	White Solid
<u>~</u>	

VARIABLES

Variable	How will changing this variable affect the temperature change of the reaction?
Water Amount	The greater the water amount, the smaller the temperature change.
Water Temperature	The hotter the water, the bigger the temperature change.
NaCl Mass	The greater the NaCl mass, the bigger the temperature change.
NaHCO3 Mass	The greater the NaHCO3 mass, the bigger the temperature change.
Contaíner Materíal	The thicker the container material, the smaller the temperature change.

Experimental Considerations:

- 1. You will only have access to the materials on the materials page.
- 2. If you are not changing stir speed, the stir speed must be level 2.
- 3. See materials page for restrictions on experimental design.

Changing Variable(s) (Independent Variable(s))

You will get to perform two experiments. For your first experiment, decide which variable(s) (max two) you would like to test.

Changing Variable 1: <u>CARCEC AGASACS</u> Discuss with your subgroup how you think **changing variable 1** will affect the temperature change of the chemical reaction.

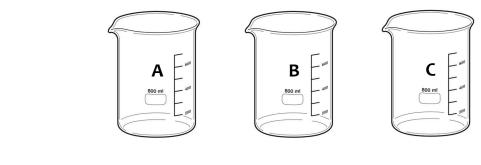
Changing Variable 2 (optional)

QUESTION

Question our subgroup will investigate:

If we change the market of the change o

what will happen to the temperature change of the


reaction

SciTrek Member Approval: ______Sc

Get a materials page from your volunteer and fill it out before moving onto the experimental set-up.

EXPERIMENTAL SET-UP

Write your changing variable(s) (Ex: NaCl mass) and the values (Ex: 2.0 g) you will use for your trials under each beaker.

Changing Variable(s):

1) N	1a Hacodz Mass :	9.0 g	3.Q G	2.3 g
2)	Nacl Mass :	2.0 g	0.39	6.99

Controls (variables you will hold constant):

Write your controls and the values you will use in all your trials (control/value, Ex: container type/beaker).

Container Type /	Beaker	NOCHICOZINATOSSS 4.0000
Water Volume 1		NSOLÓN Spæsd / 4 evel 2

SciTrek Member Approval:	SG
• • •	

PROCEDURE

Procedure Note:

Make sure to include all values of your changing variable(s) in the procedure. Ex: For a subgroup that decided to change sodium chloride (NaCl) mass one step would be: Measure A) 2.0 g, B) 4.5 g, and C) 8.0 g of NaCl in a weigh boat.

1. _Measure A) 0.0 g, B) 4.0 g, and C) 2.3 g of _____

Nattcoz in a weigh boat.

- ^{2.} <u>Measure A) 2.0 g, B) 0.3 g, and C) 6.9 g of</u> <u>NaCl ín a weigh boat.</u>
- 3. <u>Measure 6.0 g of Cacl2 in a weigh boat.</u>
- Míx all the solids together in another weigh boat.
- 5. <u>Pour 50 mL of water into a beaker, and record</u> <u>the initial temperature.</u>
- 6. <u>Put a stír bar in the beaker, and turn the stír</u> <u>speed to level 2.</u>
- 7. Pour the solids into the beaker.
- 8. <u>Record the max temperature, and subtract to</u> <u>find the temperature change.</u>

SciTrek Member Approval: ______SC_____

RESULTS Table

Fill out the table for each of your trials. For the variables that remain constant, write the value in *Trial A*. Then, draw an arrow through each box indicating the variable is a control. Remember to record measurements to the nearest tenth (Ex. 2.1 g).

Variables		Trial A	Trial B	Trial C
Container Type:		Beaker —		
	Water Volume:	50 mL		
	CaCl ₂ Mass:	6.0 g		
	NaHCO ₃ Mass:	0.0 g	4.0 g	2.3 g
	NaCl Mass:	2.0 g	0.3 g	6.99
	Stir Speed	Level 2		
	Predictions	Trial A	Trial B	Trial C
smal	n "S" in the trial that will give the llest temperature change and an n the trial that will give the largest temperature change.	S		L
D	ata and Calculations	Trial A	Trial B	Trial C
ements:	Initial Temperature (°C):	20.0°C	19.9°C	19.8°C
Measurements:	Maximum Temperature (°C):	42.5°C	35.7°C	40.7°C
suc:		Felt hot	felt warm;	felt warm;
Observations:			•	medíum
Оb			bubbles	bubbles
ions:	Temperature	42.5°C	214 35.7°C	3 40 .7℃
Calculations:	Change (°C):	<u>-20.0°C</u>	<u>-19.9°C</u>	- <u>19.8°C</u>
Cal	$\Delta T = T_{max} - T_{min}$	22.5°C	15.8 °C	20.9°C

The independent variable(s) is(are) the changing variable(s) and the dependent variables are the maximum temperature and other.

- 1. Directions: Fill in the missing definitions.
 - · conclusion: <u>A claim supported by data</u>
 - **Claim:** A statement that can be tested. The explanation of the data, the first part of a conclusion.
 - Ex: The ball mass does not affect the speed at which it rolls down a ramp.
 - A claim in a scientific experiment often includes the <u>changing variable</u>.
 - **Data:** Evidence collected from experiment(s) (measurements or observations), the second part of a conclusion.
 - Ex: When the ball mass was 360 g is speed was $1.2 \frac{\text{m}}{\text{s}}$, and when the ball mass was 100 g its speed was $1.1 \frac{\text{m}}{\text{s}}$.
 - Data in a scientific experiment includes <u>measurements</u> or <u>observations</u>.
 - Data statements also often include values of the <u>changing variable</u>.
- Directions: On the results tables and conclusions below, underline <u>control(s)</u>, circle
 Changing variable(s), and box information about data collection. Then, decide if the possible conclusion is correct or not.

Variables		Trial A	Trial B	Trial C	Trial D
Container Type:		Beaker			
	Solid A Mass:	2.0 g			
	Solid B Mass:	6.0 g			
<	Solid C Mass:	5.0 g	7.0 g	9.0 g	11.0 g
Stir Speed:		Medium			
_	Data	Trial A	Trial B	Trial C	Trial D
ments/ tions:	Temperature Change:	8.5°C	10.5°C	18.1°C	22 . 7°C
Measurements/ Observations:	Other:	Made a little foam	Made foam	Foam filled to the top	Overflowed with foam

Possible Conclusion: The greater the colid C mass the higher the temperature change, because when the solid C mass was 5.0 g the temperature change was 8.5° C, and when the solid C mass was the temperature change was 22.7° C.

YES

Is this a correct conclusion?

a)

NO

I DON'T KNOW

If NO, what is wrong with the conclusion? _

b)	Variables		Trial A	Trial B	Trial C	Trial D
	Container Type:		Beaker			
		Solid A Mass:	6.0 g			
		Solid B Mass:	10.0 g			
	Solid C Mass:		8.0 g			
	Stir Speed		Slow	Medium	Fast	Super-Fast
	Data		Trial A	Trial B	Trial C	Trial D
	ments/ ions:	Temperature Change:	13.0°C	12 . 1°C	11.3°C	10 . 2°C
	Measurements/ Observations:	Other:	Made foam	Made a little foam	Made foam	Made a little foam

Possible Conclusion: The greater the stir speed the higher the temperature change, because when the stir speed was flow, the temperature change was 13.0°C, and when the stir speed was uper-fast the temperature change was 10.2°C.

YES

Is this a correct conclusion?

c)

NO

I DON'T KNOW

If NO, what is wrong with the conclusion? INCOrrect claim

	Variables		Trial A	Trial B	Trial C	Trial D
	Container Type:		Beaker			
	Solid A Ma	ssi	2.0 g	4.0 g	6.0 g	8.0 g
	Solid B Ma	<u>ss</u> :	5.0 g			
	Solid C Mass:		5.0 g			
	Stir Speed	<u>1</u> :	Medium			
	Data		Trial A	Trial B	Trial C	Trial D
nents/	:: Temperatur	e Change:	7 . 1℃	5.8°C	3.7°C	2.9°C
Measurements/	Othe	er:	Overflowed with foam	Foam filled to the top	Made foam	Made a little foam

Possible Conclusion: The greater the <u>colid A mass</u> the <u>less foam is produced</u>, because We observed when the solid A mass was 2.0 g the beaker overflowed with foam, but when the solid A mass was 8.0 g the beaker had only a little bit of foam.

Is this a correct conclusion?

YES

NO

I DON'T KNOW

If NO, what is wrong with the conclusion? _____

Variables **Trial B** Trial C Trial D Trial A d) Container Type: Beaker 6.0 g Solid A Mass: Solid B Mass 10.0 g 12.0 g 14.0 g 16.0 g Solid C Mass: 8.0 g Stir Speed: Medium Data **Trial A Trial B** Trial C **Trial D** Measurements/ Observations: Temperature Change: 11.5°C 10.2°C 12.0°C 10.8°C Made a Made more Foam filled Overflowed Other: little foam foam with foam to the top

Possible Conclusion: We observed, when there were 16.0 g of solid B, the reaction overflowed with foam and when there were 10.0 g of solid B, the reaction made a little foam because the greater the colid B mass the more foam is made.

Is this a correct conclusion?

YES

NO

I DON'T KNOW

If NO, what is wrong with the conclusion? Claim and data switched

e

e)		Variables	Trial A	Trial B	Trial C	Trial D
		Container Type:	Beaker			
		Solid A Mass:	2.0 g	3.0 g	4.0 g	5.0 g
		Solid B Mass:	5.0 g			
		Solid C Mass:	8.0 g	6.0 g	4.0 g	2.0 g
		Stir Speed:	Fast			→
	Data		Trial A	Trial B	Trial C	Trial D
	ments/ ions:	Temperature Change:	13.3℃	10.8°C	8.1°C	5.9°C
	Measurements/ Observations:	Other:	Overflowed with foam	Foam filled to the top	Made foam	Made a little foam

Possible Conclusion: The smaller the **colid** A mass, the higher the temperature change, because when the solid A mass was 2.0 g, the temperature change was 13.3° C, and when the solid A mass was 5.0 g, the temperature change was 5.9° C.

Is this a correct conclusion? YES NO I DON'T KNOW If NO, what is wrong with the conclusion? <u>More than 1 changing variable</u>.

3. How many changing variables can you have in order to make a conclusion? <u>1</u>

CONCLUSION

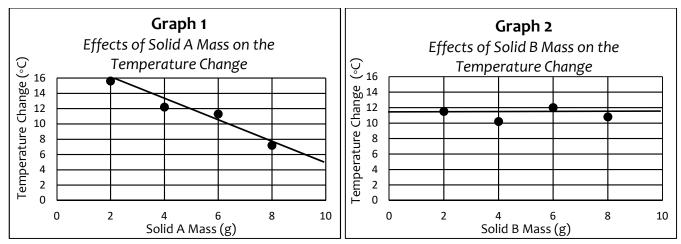
Making a Conclusion from Your Data

How many changing variables did you have in your experiment? ______

Can you make a conclusion from your data?

IF NO
why? Because we had more than one
changing variable.

IF YES
We can conclude <u>The greater the calcium chloride</u> mass, the greater the temperature change
because When the CaCl ₂ mass was 3.2 g, the data (measurements/observations/calculations) temperature change was 3.4°C, and when the CaCl ₂ mass was 9.0 g, the temperature change was 13.3°C.


SciTrek Member Approval: ______SG

TECHNIQUE Trend Lines

Trend lines are used to find trends in data on graphs.

How to draw a trend line:

- 1. Position your ruler on the graph so it goes along with the direction of the points and places half the points above the ruler and half the points below the ruler. When positioned correctly, all points should be as close as possible to the ruler.
- 2. Trace along the ruler with your pencil. Always extend trend lines to both edges of the graph.

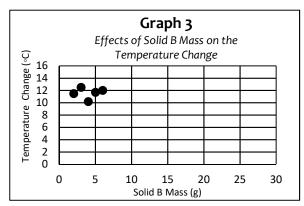
How to interpret trend lines:

- If the line is increasing (//), or decreasing (//), there is a trend.
- If the line is flat (), there is no trend.

1. Directions: Answer the questions using Graphs **1** and **2**.

a) Which graph(s) represent a changing variable that affects the data?

b) Which changing variable affects the data?


• Describe the trend by filling in the following sentence frame:

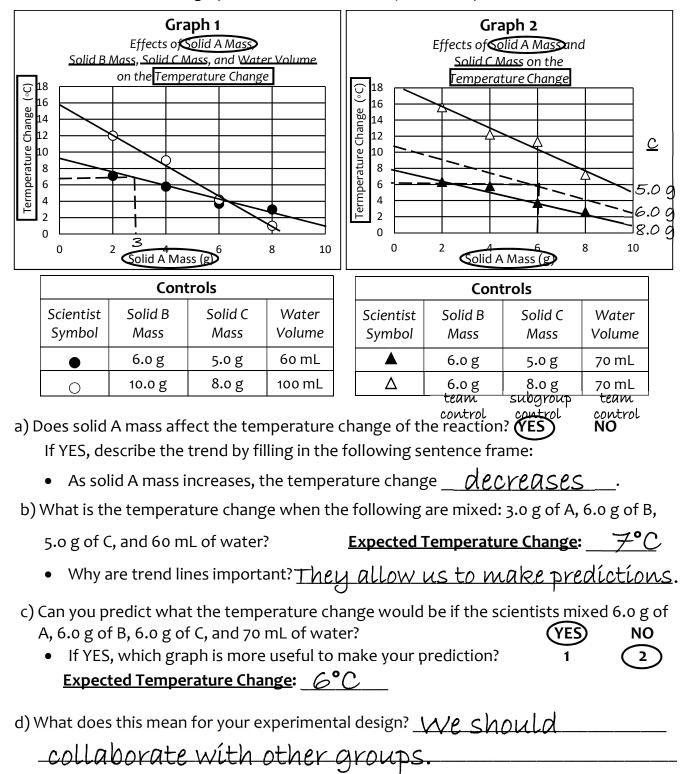
As solid <u>A</u> mass increases, the temperature change <u>decreases</u>

2. Directions: Answer the question using Graph 3.

What is the challenge in drawing a trend line on this graph?

<u>he points are too close</u> together.

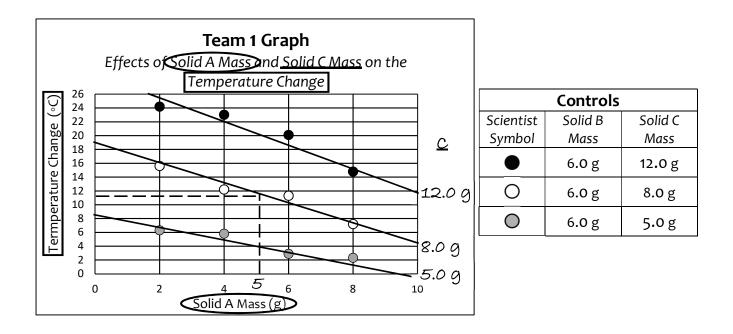
(1)


2

В

TECHNIQUE

Designing Experiments


Four UCSB scientists were studying the temperature change in a chemical reaction by examining solid A mass, solid B mass, solid C mass, and the water volume used. They all picked solid A mass as their changing variable. Two scientists worked independently, and they used different control values for solid B mass, solid C mass, and water volume (Graph 1). The other two scientists collaborated, and they picked the same control values for solid B mass and water volume (Graph 2).

3. Directions: Annotate the graphs and draw trend lines for each experiment.

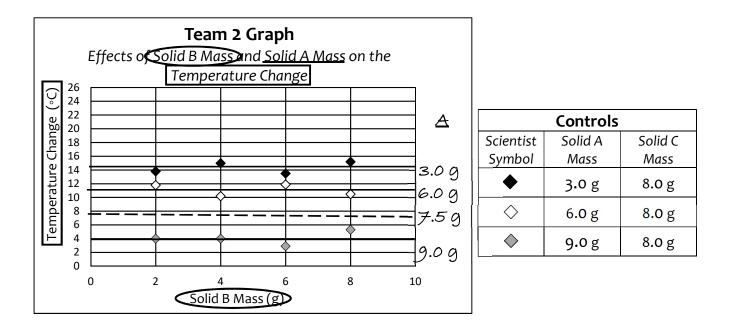
A large group of scientists collaborated by dividing into three teams to study the effects of solid A mass, solid B mass, solid C mass, and water volume on the temperature change in a chemical reaction. The three teams agreed to keep the water volume constant at 70 mL for ALL experiments/trials. Now, they need your help to analyze the data.

1. Directions: Annotate the graph, draw trend lines for each experiment, and label trend lines with subgroup control values.

a) Does solid A mass affect the temperature change of the reaction? (YES)

If YES, describe the trend by filling in the following sentence frame:

- b) What temperature change would you expect to calculate with the following amounts?


Solid A Mass	5.0 g
Solid B Mass	6.0 g
Solid C Mass	8.0 g

What experiment(s) do you need to look at?

Expected Temperature Change:	
11°C	

2. Directions: Annotate the graph, draw trend lines for each experiment, and label trend lines with subgroup control values.

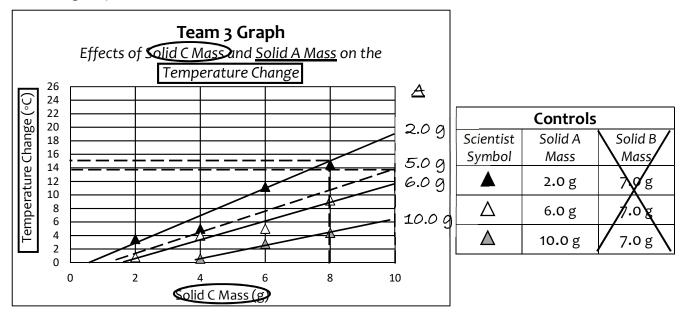
a) Does solid B mass affect the change in temperature of the reaction?

YES

If YES, describe the trend by filling in the following sentence frame:

As solid B mass increases, the temperature change ______

b) What temperature change would you expect to calculate with the following amounts?


Solid A Mass	7.5 g
Solid B Mass	5.0 g
Solid C Mass	8.0 g

What experiment(s) do you need to look at?

Expected Temperature Change: _____チロン

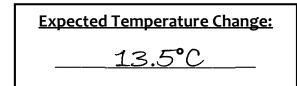
3. Directions: Annotate the graph, draw trend lines for each experiment, and label trend lines with subgroup control values.

a) Does solid C mass affect the change in temperature of the reaction?

If YES, describe the trend by filling in the following sentence frame:

b) What temperature change would you expect to calculate with the following amounts?

Solid A Mass	2.0 g
- Solid B Mass	3.0 g
Solid C Mass	8.0 g

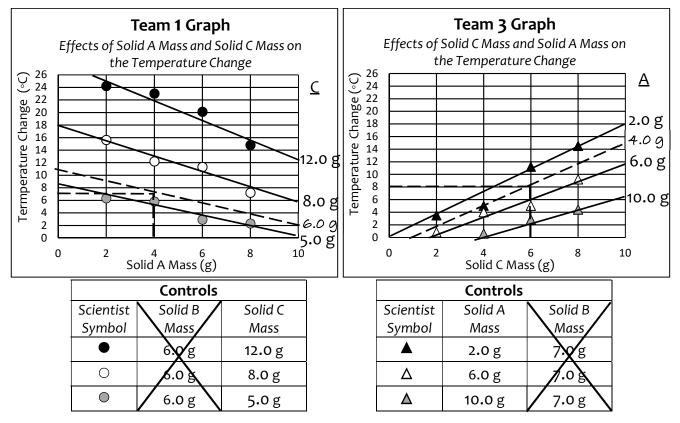

Expected Temperature Change:		
15°C		

What experiment(s) do you need to look at?

 $\textcircled{\ } \land \quad \land \quad \land$

c) What temperature change would you expect to calculate with the following amounts?

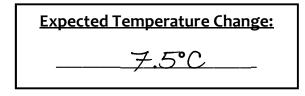
Solid A Mass	5.0 g
Solid B Mass	7.0 g
Solid C Mass	10.0 g



What experiment(s) do you need to look at?

The lab wants to know if the trends in their data can be used to predict the temperature change for different combinations of solid A mass, and solid C mass, which have not been tested yet. Use teams' 1 and 3 graphs to help the lab interpret the data.

4. Directions: Annotate the graph, draw trend lines for each experiment, and label trend lines with subgroup control values.


a) Using <u>both</u> of the graphs above, what temperature change would you expect to calculate with the following amounts?

Solid A Mass	4.0 g
Solid B Mass	<u>10.0 g</u>
Solid C Mass	6.0 g

What experiment(s) do you need to look at?

Team 1 Prediction: ______C

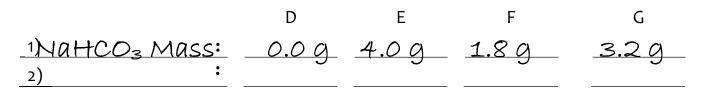
Changing Variable(s) (Independent Variable(s))

For your second experiment, decide which variable(s) (max two) you would like to test.

Changing Variable 1: NAHCO3 MASS

Changing Variable 2 (optional):_____ #1 The scientists in our team are _____.

#2 QUESTION


Question our subgroup will investigate:

• If we change the <u>NAHCO3 MASS</u> insert each changing variable (independent variable) what will happen to the <u>temperature change of the</u> insert what you are calculating <u>reaction</u>?

Use the following constraints to select your changing variable values:

- CaCl₂ masses must be between 3.0 g and 9.0 g (original 6.0 g)
- NaHCO $_3$ masses must be between 0.0 g and 4.0g (original 2.4 g)
- NaCl masses must be between 0.0 g and 8.0 g (original 3.9 g)

Selected changing variable values:

SciTrek Member Approval:

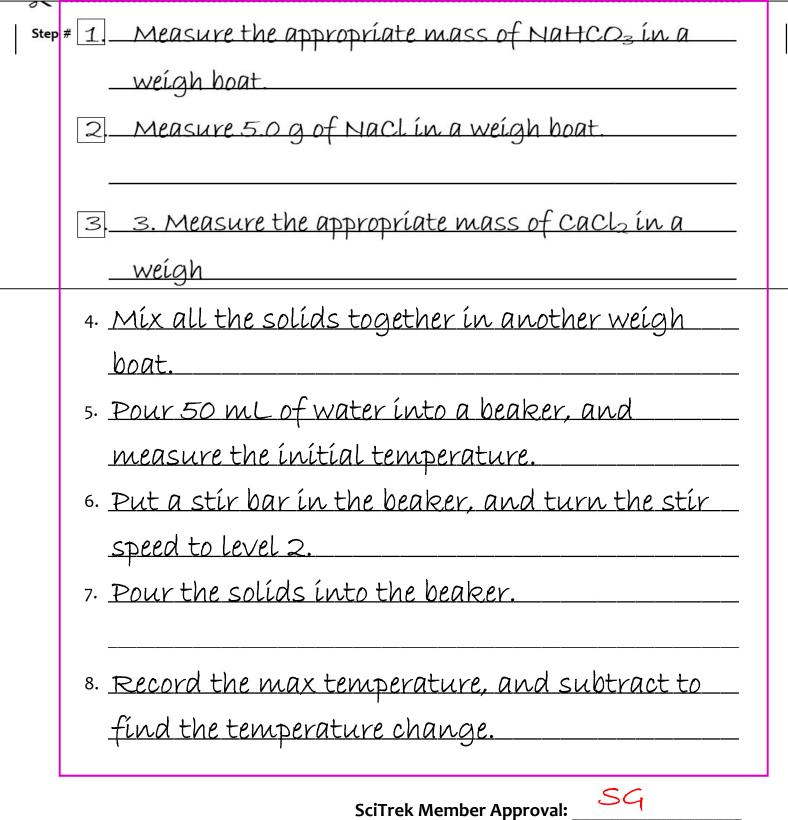
#3 EXPERIMENTAL SET-UP

Write your changing variable(s) (Ex: NaCl mass) and the values (Ex: 2.0 g) you will use for your trials under each beaker.

#4. EXPERIMENTAL SET-UP: SPECIFIC (Once filled out, staple to notebook pg. 19)	
If you are responsible for presenting your team's specific experimental set-up, fill in the	
following sentence frame with information from your Experimental Set-Up. This is what you will	
read when you present.	
Our team's subgroup control is <u>CACL2 WASS</u> . The values	
our team used are <u>9.0</u> g and <u>3.0</u> g. We picked these values because	
we wanted our trend lines to be spaced out, so we	
spread our CaCl2 masses across the range.	

Controls (variables you will hold constant): Write your controls and the values you will use in all your trials (control/value, Ex: container type/beaker).

Class and Team Controls: (same values between subgroups)	Subgroup Control: (different values between subgroups)
Container Type / Beaker	Cacl2 Mass 19.0 g
Water Volume 150 mL NaCl Mass/ 5.0 g Stír Speed ILevel 2	

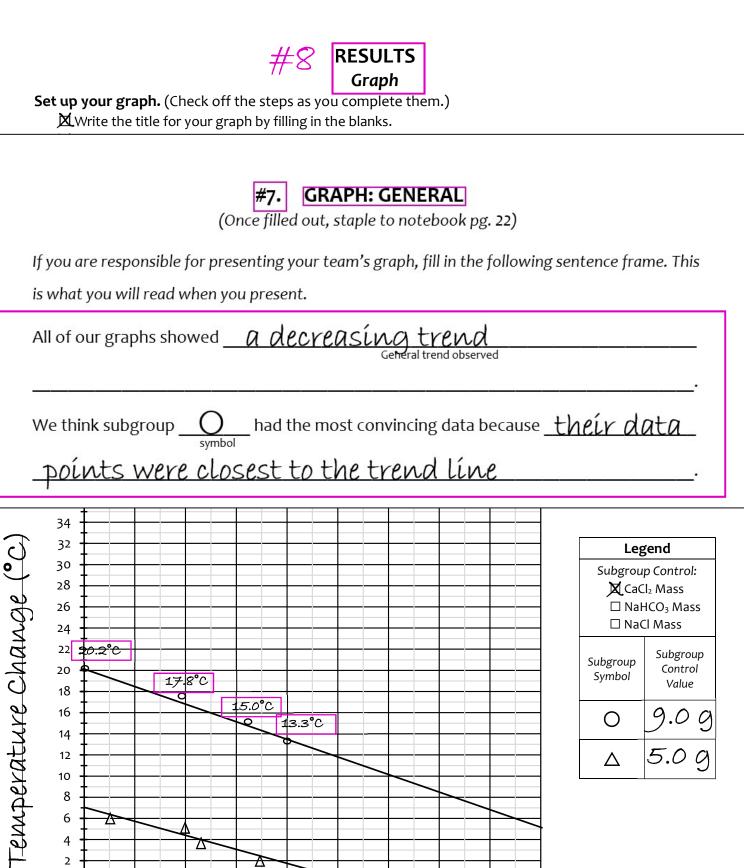

SciTrek Member Approval: _

SG

Procedure Note:

Make sure to include all values of your changing variable(s) in the procedure. Ex: For a subgroup that decided to change sodium chloride (NaCl) mass, one step would be: Measure D = 0 of D = 0 of D = 0 of D = 0

RESULTS


Table

Check the l	We are subgroup O_{symbol} . Our changing variable is $NaHCO_3 mass$, and	able
for each of	symbol	rrow
through ea	the values we use are 0.0 g, 4.0 g, 1.8 g, and 3.2 g.	t tenth
(Ex. 2.1 g).		

Subgroup Control: 🛛 CaCl₂ Mass 🗆 NaHCO₃ Mass 🗆 NaCl Mass Subgroup Symbol: O

	Variables	Trial D	Trial E	Trial F	Trial G
	Container Type:	Beaker			
	Water Volume:	50 mL.			
CaCl ₂ Mass:		9.09.			
(NaHCO ₃ Mass:	0.0 g	4.0 g	1.8 g	3.2 g
	NaCl Mass:	5.0 g			
	Stír Speed	Level 2			
	Predictions	Trial D	Trial E	Trial F	Trial G
sma	n "S" in the trial that will give the llest temperature change and an n the trial that will give the largest temperature change.	L	S		
D	ata and Calculations	Trial D	Trial E	Trial F	Trial G
ements:	Initial Temperature (°C):	20.2°C	19.8°C	19.8°C	19.9°C
Measurements:	Maximum Temperature (°C):	40.4°C	33.1°C	37.6°C	34.9°C
Observations:	Other:	Felt hot	Felt slíghtly warm; lots of bubbles	Small amount of bubbles	Medíum amount of bubbles
Calculations:	Temperature Change (°C): $\Delta T = T_{max} - T_{min}$	40.4°C <u>-20.2°C</u> 20.2°C	²¹² BB :1°C - <u>19.8°C</u> 13.3 °C	²¹⁶ 7.6°C - <u>19.8°C</u> 17.8°C	²¹ 3 4.9°C <u>-19.9°C</u> 15.0°C

The independent variable is the changing variable and the dependent variables are the maximum temperature and other.

 \bigcirc

1.8

NaHCO3 Mass (g)

Generate a <u>claim</u> about how your changing variable affected your subgroup's results. (Ex: The greater the water volume the smaller the temperature change.)

What <u>data</u> do you have to support your claim? (Remember to include your measurements and/or observations, <u>not</u> <u>trial letters</u>. We can conclude the greater the Watth Obtime, the souther the the temperature is a claim change because when the wheth of a massing 2.2 on the temperature change or as 2.2 on the temperature change or as 2.2 of the temperature change or as 2.4 °C (biggest), and when the watth O was as of on the the watth O was as of on the temperature change was as of on the temperature change

I acted like a scientist when I measured the maximum

temperature of the reaction.

TEAM PREDICTIONS

Use your team graph to predict the temperature change for each subgroup if you were to use 3.5 g of your changing variable. Write your predictions in the table below.

Changing Variable Mass:				
3.5 g				
Subgroup Symbol	Prediction			
0	2.0°C			
\bigtriangleup	14.5°C			

NOTES ON PRESENTATIONS

What variables affect the temperature change of the chemical reaction?

Changing Variable: □ NaHCO3 Mass (g) X CaCl2 Mass (g) □ NaCl Mass (g)	3.0	4.5	7.1	9.0
Temperature Change (°C):	2.8	5.9	10.8	13.4

Question: Did all subgroups on your team observe the same

trend?

summary: As CaCl₂ mass \uparrow , temperature Change \uparrow

Nacl mass does not affect temperature change

Changing Variable:	□ NaHCO3 Mass (g) □ CaCl2 Mass (g) XNaCl Mass (g)	0.5	3.1	6.4	8.0
Temperature Chang	ge (°C):	5.7	6.2	5.1	5.6

Question: Based on the first experiment, were you able to predict

how Nacl mass would affect the temperature change?

summary: <u>Nacl mass does not affect temperature change</u>

As NattCO3 mass 🔨, temperature Change 🗸

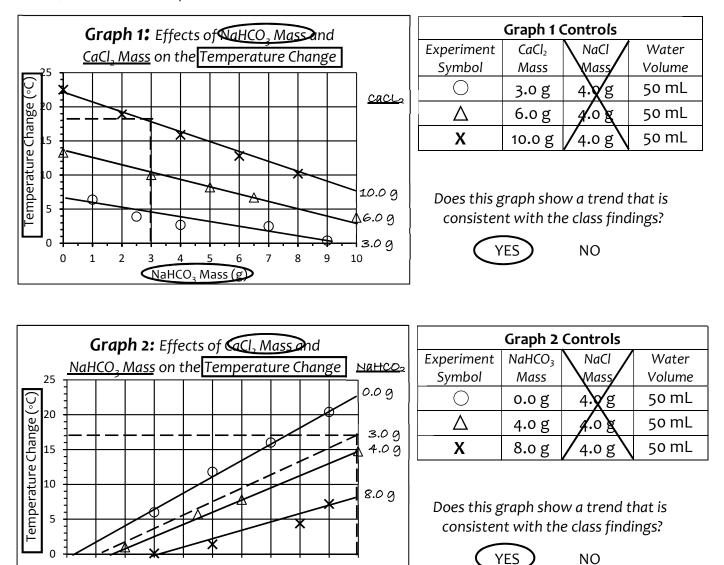
TIE TO STANDARDS

1. Review the class findings about each substance from poster presentations.

Does NaCl mass affect the temperature change?	YES	NO	
If YES, describe the trend: The greater the NaCl mass, temperature change.	the		the
Does NaHCO ₃ mass affect the temperature change?	YES	NO	
If YES, describe the trend: The greater the NaHCO $_3$ matemperature change.	ass, the	smaller	the
Does CaCl₂ mass affect the temperature change?	YES	NO	
If YES, describe the trend: The greater the CaCl₂ mass, temperature change.	the	larger	the
When scientists conduct experiments, they often re same way, several times. Why? <u>Results</u> will w	•		
numbers. Doing multiple trials tells u	s how m	uch the	
results can vary from each other.			

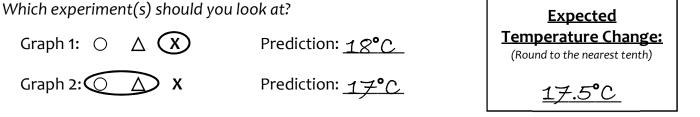
When running multiple trials in an experiment, scientists collect a series of different data points. Then, they use math tools called **median** and **range** to help analyze the data.

3. Determine the median and range for the data in the table below.

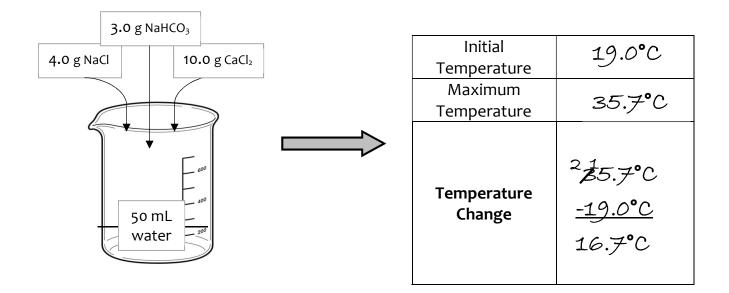

2.

Substance Masses:	Temperature Change (°C):	Median:	Range:
	11.9, 11.7, 12.1, 14.9, 13.4		
o.o g NaHCO₃ 4.o g NaCl 5.o g CaCl₂	11,7, 11,9, 12.1 17.4, 14.9	12.1°C	14.9°C - <u>11.7°C</u> 3.2°C

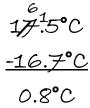
4. What does this tell us? <u>As long as our predictions are within</u> <u>3.2°C of the actual data, we can consider them correct.</u> 5. Annotate the graphs below, draw trend lines, label subgroup controls, and answer the questions.


Why has the graph for NaCl mass been left out? <u>NaCl mass does not</u>

affect the temperature change.



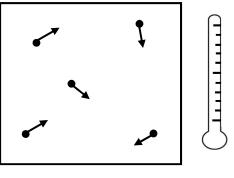
6. Using data from the graphs, what temperature change would you expect to measure if you mixed 4.0 g NaCl, 3.0 g NaHCO₃, 10.0 g CaCl₂, and 50 mL water?


CaCl, Mass (g)

7. What temperature change was measured when we mixed 4.0 g NaCl, 3.0 g NaHCO₃, 10.0 g CaCl₂, and 50 mL water?

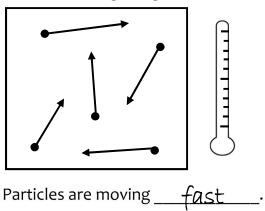
8. How far was the measured temperature change from the expected temperature change?

9. Can we consider our predicted temperature change correct? YES NO
10. Is the temperature change in the reaction predictable? YES NO


Why is the temperature change predictable?

11. **Temperature** is a measure of <u>kinetic energy</u>, which is

the energy of motion


12. In the boxes below, indicate the speeds of the particles using arrows (larger arrows = faster speeds). Then, fill in the thermometers to represent their relative temperatures.

Kinetic Energy: Low

Particles are moving ______

Kinetic Energy: High

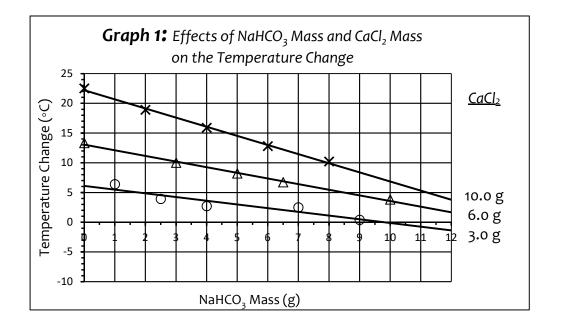
13. What did we <u>start</u> with in our experiment? Fill out the table below with your observations of the starting materials.

Starting Material	Observations
NaCl	White, grainy, square
	píeces, solíd
CaCl₂	White, small, solid balls
NaHCO ₃	White, powdery, different size pieces, solid
Water	Clear líquíd

14. What did we end with? <u>Liquid turned milky white with a solid</u>

at bottom of bag. Gas was produced that puff up the bag,

15.	Did a chemical reaction happen?	YES	NO
	Evidence: <u>Gas formed</u> , temperature changed		
16.	Can energy be created or destroyed?	YES	NO
17.	When a chemical reaction gets warmer, energy has been	released	·
18.	Do all substances store the same amount of energy?	YES	NO
	Evidence: Adding the same amounts of different	rent subs	stances
	gíves a dífferent temperature change.		


19. Summarize the effects of each substance on the temperature change and kinetic energy by circling the answer that best completes each statement.

NaCl Mass			
As NaCl mass increases, the temperature change	increases decreases stays the same		
If we add more NaCl to the reaction, the kinetic energy	increases decreases stays the same		
CaCl ₂ Mass			
As CaCl₂ mass increases, the temperature change	decreases stays the same		
If we add more CaCl₂ to the reaction, the kinetic energy	increases decreases stays the same		
NaHCO ₃ Mass			
As NaHCO ₃ mass increases, the temperature change	increases decreases stays the same		
If we add more NaHCO $_3$ to the reaction, the kinetic energy	increases decreases stays the same		

20. What would happen if we mixed 12.0 g of NaHCO₃, 3.0 g of CaCl₂, 4.0 g of NaCl, and 50 mL of water? (Graph 1 is shown again below to help you).

The reaction will feel cold, because the temperature change

will be negative.

- 21. When a chemical reaction gets colder, energy has been ______ absorbed _____.
- 22. Chemical reactions can <u>absorb</u> or <u>release</u> energy.
- 23. The energy transferred in a chemical reaction is affected by:

Type of substance_____

Mass

EXTRA PRACTICE

Directions:

Circle if the statement is a CLAIM, DATA, or an OPINION.

1.	а.	The Mariana Trench is 10,994 m deep and the Tonga Trench is 10,880 m deep.	Claim	Data	Opinion
	b.	Adults eat more vegetables than children do.	Claim	Data	Opinion
	с.	Oceans with temperatures over 25°C have more fish than cooler oceans.	Claim	Data	Opinion
	d.	115 people bought Oreos and 95 people bought Chips Ahoy.	Claim	Data	Opinion
	e.	Writing a procedure is hard.	Claim	Data	Opinion
	f.	The planet Venus has been observed in full, half, and quarter phases.	Claim	Data	Opinion
	g.	The largest reptile is the saltwater crocodile.	Claim	Data	Opinion
	h.	The more dust in the air, the prettier the sunset.	Claim	Data	Opinion

Directions for annotating: Underline <u>control(s)</u>, circle <u>changing variable(s</u>), and box information about data collection.

2. a) Annotate the following results table.

Variables		Trial A	Trial B	Trial C
Solid A Mass:		4.0 g -		
	Solid B Mass	6.0 g	9.0 g	12.0 g
	Solid C Mass:	5.0 g -		
	Data	Trial A	Trial B	Trial C
ements/ itions:	Temperature Change (°C):	9.3°C	8.7°C	9.1°C
Measurements/ Observations:	Other:	Large amount of foam	Medium amount of foam	Small amount of foam

b) Can this group make a conclusion?

YES NO

I DON'T KNOW

c) Annotate the following possible conclusion.

Possible Conclusion: The greater the solid B mass the less foam is made, because we observed, when the solid B mass was 6.0 g there was a large amount of foam, and when the solid B mass was 12.0 g there was a small amount of foam.

- d) Is this a correct conclusion for the results table? (YES) NO I DON'T KNOW
 - If NO, what is wrong with the conclusion? _
- 3. a) Annotate the following results table.

Variables		Trial A	Trial B	Trial C
Solid A Mass		2.0 g	4.0	8.0
Solid B Massi		3.0 g	6.5 g	8.0 g
Solid C Mass:		5.0 g -		
Data		Trial A	Trial B	Trial C
Measurements/ Observations:	Temperature Change (°C):	10.5°C	13.3°C	16.1°C
	Other:	Small amount of foam	Medium amount of foam	Large amount of foam

b) Can this group make a conclusion?

YES

NO

I DON'T KNOW

c) Annotate the following possible conclusion.

Possible Conclusion: The greater the solid A mass the greater the temperature change, because when the solid A mass was 2.0 g the temperature change was 10.5°C, and when the solid A mass was 8.0 g, the temperature change was 16.1°C.

- d) Is this a correct conclusion for the results table? YES (NO) I DON'T KNOW
 - If NO, what is wrong with the conclusion? More than 1 changing variable.

4. a) Annotate the following results table.

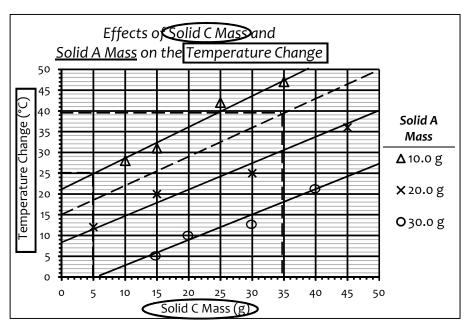
	Variables	Trial A	Trial B	Trial C
Solid A Mass:		7.0 g -		►
Solid B Mass:		5.0 g -		►
Solid C Mass		2.5 g	5.0 g	7.5 g
Data		Trial A	Trial B	Trial C
Measurements/ Observations:	Temperature Change (°C):	7.2°C	10 . 2°C	14.4°C
	Other:	Medium amount of foam	Medium amount of foam	Small amount of foam

b) Can this group make a conclusion?

YES NO

I DON'T KNOW

c) Annotate the following possible conclusion.

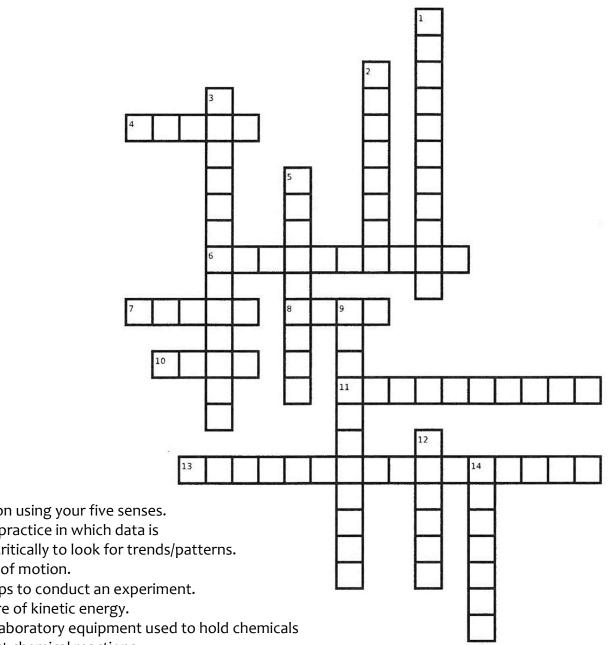

Possible Conclusion: The greater the solid C mass the greater the temperature change, because when the solid C mass was 2.5 g, the temperature change was 14.4° C, and when the solid C mass was 7.5 g, the temperature change was 7.2° C.

d) Is this a correct conclusion for the results table? YES (NO) I DON'T KNOW If NO, what is wrong with the conclusion? <u>Claim and data switched</u>.

Directions: Some scientists wanted to know how changing the solid C mass would affect the temperature change of the reaction. They did three experiments, using a different solid A masses each time, and plotted most of their data on a graph. Answer question 5 using the graph below.

- 5. a) Annotate the graph.
 - b) Plot the data points from the chart below on the graph using circles (**O**) as markers.

Substance A Mass:					
30.0 g					
Change in					
Temperature (°C)					
5					
10					
13					
22					



c) Draw trend lines on the graph for each data set.

- d) In general, for all solid A masses, what happens to the temperature, as the solid C mass increases? <u>The temperature change increases</u>.
- e) What will the temperature change be when 10.0 g of A and 5.0 g of C are mixed?
- f) What will the temperature change be when 15.0 g of A and 35.0 g of C are mixed?

CROSSWORD PUZZLE

Directions: Fill out the following crossword puzzle using the clues below.

Down

- 1. A description using your five senses.
- 2. A scientific practice in which data is examined critically to look for trends/patterns.
- 3. The energy of motion.
- 5. A set of steps to conduct an experiment.
- 9. The measure of kinetic energy.
- 12. A piece of laboratory equipment used to hold chemicals and conduct chemical reactions.
- 14. A variable that is purposely kept the same throughout an experiment.

Across

- 4. A statement that can be tested.
- 6. A claim supported by data.
- 7. When data changes in one general direction, there is a ______.
- 8. Measurements and observations are the two types of ______.
- 10. The button you push to "zero" a scale.
- 11. What you expect to happen based off of previous data.
- 13. A process where substances are altered into different substances.

SciTrek is an educational outreach program that is dedicated to allowing 2nd-12th grade students to experience scientific practices firsthand. SciTrek partners with local teachers to present student-centered inquiry-based modules that not only emphasize the process of science but also specific grade level NGSS performance expectations. Each module allows students to design, carry out, and present their experiments and findings.

For more information, please feel free to visit us on the web at <u>scitrek.chem.ucsb.edu</u> or contact us by e-mail at scitrekelementary@chem.ucsb.edu.

SciTrek is brought to you by generous support from the following organizations:

If you would like to donate to the program or find out how you can get your company's logo on our notebooks please contact <u>scitrekelementary@chem.ucsb.edu</u>