Group Color: \_\_\_\_\_\_ Subgroup Number: \_\_\_\_\_\_



# **How Science Works**

Grade 4

Module 1

Class Question:

Scientist (Your Name): \_\_\_\_\_

Teacher's Name: \_\_\_\_\_\_

SciTrek Volunteer's Name:

## VOCABULARY

**Science:** The study of the material world using human reason. The scientific method is the way humans reason and apply logic to data to help gain knowledge of the world.

- **Observation:** A description using your five senses. This could include contents, mass, size, color, temperature, smell, texture ...
- **Opinion:** Something you believe or feel. Not a fact or observation.
- Inference: A guess based on past experiences.
- **Testable Question:** A question for which an experiment can be designed to answer.
- Non-Testable Question: A question for which an experiment cannot be designed to answer.
  For example, questions involving things that cannot be measured/observed or things that are not well defined/opinions.
- **Experimental Set-Up:** The materials, changing variable, and controls that are needed for an experiment.
- Experiment: A test or trial to discover something unknown.
- **Procedure:** A set of steps to conduct an experiment.
- **Controls:** The variables that are not changed in an experiment.
- **Changing Variable (Independent Variable):** The variable that is purposely changed in an experiment.
- **Results/Data (Dependent Variable):** The measurements/observations of the experiment, which are influenced/determined by the changing variable.
- **Prediction:** What you expect to happen based off of previous measurements/observations.
- Scientific Practices: A series of activities that scientists participate in to both understand the world around them and to communicate their results with others. The specific practice worked on in this module is procedures.
- **Technique:** A method for a specific task.
- **Contents:** Materials that are inside of the bottle besides the solution.
- **Conditions:** Other variables outside of the bottle that may affect the solution.
- Aquatic: Plants and/or animals that live in the water.
- **Solution:** Two things mixed together that look like one.

## **OBSERVATIONS**

**Contents:** Materials that are *inside* of the bottle besides the solution.

Ex: Aquatic Plant

**Conditions:** Other variables *outside* of the bottle that may affect the solution.

|                                                 | Bottle 1 | Bottle 2 | Bottle 3 |
|-------------------------------------------------|----------|----------|----------|
| Contents:                                       |          |          |          |
| Conditions:                                     |          |          |          |
| Color of<br>Solution at Start<br>of Experiment: |          |          |          |
| Color of<br>Solution at End<br>of Experiment:   |          |          |          |

Ex: In the Dark

Describe what happened to the solution over the course of 24 hours:

Bottle 1: \_\_\_\_\_

Bottle 2: \_\_\_\_\_

Bottle 3: \_\_\_\_\_

# VARIABLES

| Variable | How will changing this variable affect the color of the solution? |
|----------|-------------------------------------------------------------------|
|          |                                                                   |
|          | ······                                                            |
|          |                                                                   |
|          |                                                                   |
|          |                                                                   |
|          |                                                                   |
|          |                                                                   |
|          |                                                                   |
|          |                                                                   |
|          |                                                                   |
|          |                                                                   |
|          |                                                                   |
|          |                                                                   |
|          |                                                                   |
|          |                                                                   |
|          |                                                                   |
|          |                                                                   |
|          |                                                                   |
|          |                                                                   |
|          |                                                                   |
|          |                                                                   |
|          |                                                                   |
|          |                                                                   |
|          |                                                                   |
|          |                                                                   |
|          |                                                                   |
|          |                                                                   |
|          |                                                                   |

# **Experimental Considerations:**

- 1. You will only have access to the materials on the materials page.
- 2. The liquid must remain the original solution.
- 3. You cannot design an experiment that you know will kill/hurt an animal.
- 4. Only one animal per bottle.
- 5. You will only get four bottles (containing original solution) per experiment.

Changing Variable (Independent Variable): \_\_\_\_\_

Discuss with your subgroup how you think your changing variable will affect the color of the solution.

# QUESTION

Question our subgroup will investigate:

SciTrek Member Approval: \_\_\_\_\_

Get a materials page from your volunteer and fill it out before moving onto the experimental set-up.

## **EXPERIMENTAL SET-UP**

Write your changing variable (Ex: animal type) and the values (Ex: fish) you will use for your trials under each bottle.



## Controls (variables you will hold constant):

Write your controls and the values you will use in all your trials (control/value, Ex: solution type/original).

| Solution Type / Original | / |
|--------------------------|---|
| 1                        | 1 |
| /                        | 1 |

SciTrek Member Approval: \_\_\_\_\_

### PROCEDURE

### **Procedure Note:**

Make sure to include all values of your changing variable in the procedure. Ex: For a subgroup that decided to change solution type one step would be: Get 4 small bottles with solution type A) original, B) red solution, C) yellow solution, and D) orange solution.

| 1. |  |
|----|--|
|    |  |
|    |  |
| 2. |  |
|    |  |
|    |  |
| 3. |  |
| -  |  |
|    |  |
| 4. |  |
| -  |  |
|    |  |
| 5. |  |
| -  |  |
|    |  |
|    |  |

In your procedure underline <u>controls</u>, circle changing variables, and box data collection.

# SCIENTIFIC PRACTICES Procedures

Directions: Fill in the missing definition. A complete procedure MUST have: All values of the \_\_\_\_\_\_ and the • The \_\_\_\_\_\_ that will be collected (measurements/observations). • The steps listed in the order they will be completed. A complete procedure MUST <u>NEVER</u> have: • \_\_\_\_\_ or irrelevant information. • \_\_\_\_\_ about the experiment.

\_\_\_\_\_\_ values of controls or the changing variable.

# SCIENTIFIC PRACTICES Procedures

### QUESTION

If we change the ball temperature, what will happen to the height the ball bounces?

### **EXPERIMENTAL SET-UP**

| Changing Variable:                                  | Trial A | Trial B       | Trial C        | Trial D |
|-----------------------------------------------------|---------|---------------|----------------|---------|
| Ball Temperature:                                   | 30 °C   | 40 °C         | 50 °C          | 60 °C   |
| <b>Controls</b> (variables you will hold constant): |         |               |                |         |
| Ball Material / Rubber                              |         | Ball Circumfe | erence / 88 cm |         |
| Release Height / 3 m                                |         | Ground        | d Type / Cemer | nt      |
| Ball Mass / 623 g                                   |         | Ball Ro       | elease / Drop  |         |

#### **Directions:**

Step 1: Read each statement and underline <u>controls</u>, circle <u>changing</u> variables and box information about data collection.

Step 2: Circle yes if the statement could be a correct step for a procedure about the question and experimental set-up above. If not, circle no.

|    |                                                                          | Could t<br>a proce<br>ste | his be<br>edure<br>p? |
|----|--------------------------------------------------------------------------|---------------------------|-----------------------|
| 1. | Get four 623 g rubber balls with circumferences of 88 cm.                | Yes                       | No                    |
| 2. | Heat rubber balls to temperatures of A) 30°C, B) 40°C, C) 50°C, D) 60°C. | Yes                       | No                    |
| 3. | Measure and observe.                                                     | Yes                       | No                    |
| 4. | Heat ball C to 50°C.                                                     | Yes                       | No                    |
| 5. | Heat rubber balls to different ball temperatures.                        | Yes                       | No                    |
| 6. | Measure the height each ball bounces on the cement.                      | Yes                       | No                    |
| 7. | Drop the boring ball from a height of 3 m.                               | Yes                       | No                    |

Underline controls, circle changing variables and box data collection.

# SCIENTIFIC PRACTICES Procedures

**Directions:** Read the following procedure that is based on the question and experimental setup on page 8 and underline <u>controls</u>, circle <u>changing variables</u> and box <u>data collection</u>. If any controls are missing or incorrect, add the correct values to the procedure. Remove any extra or irrelevant information from the procedure by crossing it out. If any steps are out of order, draw an arrow ( $\leftrightarrow$ ) to indicate the correct order.

# PROCEDURE

- 1. Get four rubber balls with circumferences of 88 cm.
- 2. Heat balls to a temperature of A)  $30^{\circ}$ C, B)  $40^{\circ}$ C, C)  $50^{\circ}$ C, D)  $60^{\circ}$ C.
- 3. Drop each ball.
- 4. Hold each ball at a height of 3 m over gravel.
- 5. Pass the ball back and forth with one other person.
- 6. Measure how high each ball bounces.
- 7. Have fun.

## RESULTS Table

Fill out the table for each of your trials. For the variables that remain constant, write the value in *Trial A*. Then, draw an arrow through each box indicating the variable is a control.

|                                                     | Variables       | Trial A                 | Trial B                 | Trial C                 | Trial D                 |
|-----------------------------------------------------|-----------------|-------------------------|-------------------------|-------------------------|-------------------------|
|                                                     | Solution Type:  | Original —              |                         |                         |                         |
|                                                     | Time:           |                         |                         |                         |                         |
|                                                     | Bottle Size:    |                         |                         |                         |                         |
|                                                     | Animal Type:    |                         |                         |                         |                         |
|                                                     | Plant Type:     |                         |                         |                         |                         |
|                                                     | Light Amount:   |                         |                         |                         |                         |
|                                                     | Other variable  |                         |                         |                         |                         |
|                                                     | Other variable  |                         |                         |                         |                         |
| Solution Color:<br>(Initial)<br>Predictions         |                 |                         |                         |                         |                         |
|                                                     |                 | Trial A                 | Trial B                 | Trial C                 | Trial D                 |
| Predicted Final Color<br>of Bottle:<br>(Circle One) |                 | Blue<br>Green<br>Yellow | Blue<br>Green<br>Yellow | Blue<br>Green<br>Yellow | Blue<br>Green<br>Yellow |
|                                                     | Data            | Trial A                 | Trial B                 | Trial C                 | Trial D                 |
| s:                                                  | Solution Color: |                         |                         |                         |                         |
| Observation                                         | Other:          |                         |                         |                         |                         |

The independent variable is the changing variable and the dependent variables are the observations.

# RESULTS Summary

| My experiment shows           |      | <br> |
|-------------------------------|------|------|
|                               |      |      |
|                               |      |      |
|                               |      |      |
|                               |      |      |
|                               | <br> |      |
|                               |      |      |
|                               |      |      |
| I acted like a scientist when |      |      |

# **TIE TO STANDARDS**

1. Fill out the following table. First predict the color of the solution based on the following contents/conditions. After each bottle is shown, record the actual solution color. (y=yellow, g=green, b=blue)

| Experiment | Bottle          | Bottle         | Predicted | Actual |
|------------|-----------------|----------------|-----------|--------|
| Number     | Contents        | Conditions     | Color     | Color  |
| 1          | Snail           | 24 Hours Light |           |        |
| 2          | Frog            | 24 Hours Light |           |        |
| 3          | Fish            | 24 Hours Light |           |        |
| 4          | Aquatic Plant 1 | 24 Hours Light |           |        |
| 5          | Aquatic Plant 2 | 24 Hours Light |           |        |

2. From the chart above, what do the solutions that are yellow/green have in common?

- 4. If you answered NO, why did some of the solutions remain blue?
- 5. Fill out the following table. First predict the color of the solution based on the following contents/conditions. After each bottle is shown then record the actual solution color. (y=yellow, g=green, b=blue)

| Experiment<br>Number | Bottle<br>Contents | Bottle<br>Conditions | Predicted<br>Color | Actual<br>Color |
|----------------------|--------------------|----------------------|--------------------|-----------------|
| 6                    | Snail              | 24 Hours Dark        |                    |                 |
| 7                    | Frog               | 24 Hours Dark        |                    |                 |
| 8                    | Fish               | 24 Hours Dark        |                    |                 |
| 9                    | Aquatic Plant 1    | 24 Hours Dark        |                    |                 |
| 10                   | Aquatic Plant 2    | 24 Hours Dark        |                    |                 |

- 6. What does the color of the solution tell us about animals in the dark?
- 7. What does the color of the solution tell us about plants in the dark?

## THE BROADER PICTURE

8. Use the graph below to answer the following questions about carbon dioxide.



13

| 9.  | What a dioxid   | are 3 things th<br>e in the atmos | at could contribut<br>sphere? | e to the increasing amounts of  | carbon |
|-----|-----------------|-----------------------------------|-------------------------------|---------------------------------|--------|
| 10. | Would           | there be carb                     | on dioxide on the i           |                                 |        |
| 10. | vouid           |                                   |                               |                                 |        |
| 11. | Have h<br>year? | numans chang                      | ed the amount of              | carbon dioxide that is produced | l each |
|     |                 |                                   | □ yes                         | □ no                            |        |

12. What are 2 things that humans do to decrease the amounts of carbon dioxide they produce?



## **EXTRA PRACTICE** Procedures

### QUESTION

If we change the jam type what will happen to the number of ants on each index card?

### **EXPERIMENTAL SET-UP**

| Changing Variable:                    | Trial A        | Trial B       | Trial C         | Trial D     |
|---------------------------------------|----------------|---------------|-----------------|-------------|
| Jam Type:                             | Strawberry     | Raspberry     | Blackberry      | Boysenberry |
|                                       |                |               |                 |             |
| <b>Controls</b> (variables you will h | old constant): |               |                 |             |
| Jam Amount / 100                      | g              | Jam           | Brand / Alber   | tsons       |
| Time / 3 Ho                           | ours           | Distance From | Anthill / 50 cm | 1           |
| Container Type / Inde                 | ex Card        | An            | t Type / Arger  | ntine Ants  |
| irections:                            |                |               |                 |             |

### D

Step 1: Read each statement and underline controls, circle changing variables and box information about data collection.

Step 2: Circle yes if the statement could be a correct step for a procedure about the question and experimental set-up above. If not, circle no.

|    |                                                                                                                       | Could this be<br>a procedure<br>step? |    |
|----|-----------------------------------------------------------------------------------------------------------------------|---------------------------------------|----|
| 1. | Put 100 g of Albertsons brand A) strawberry, B) raspberry, C) blackberry,<br>D) boysenberry jam onto each index card. | Yes                                   | No |
| 2. | Put the yummy Albertsons blackberry jam on index card C.                                                              | Yes                                   | No |
| 3. | Put the index card 50 cm away from the Argentine anthill.                                                             | Yes                                   | No |
| 4. | Make observations about the experiment.                                                                               | Yes                                   | No |
| 5. | Put 100 g of Albertsons brand strawberry jam onto index card A.                                                       | Yes                                   | No |
| 6. | Count the number of Argentine ants on each index card after 3 hours.                                                  | Yes                                   | No |
| 7. | Put 100 g of different jam types onto each index card.                                                                | Yes                                   | No |

Underline controls, circle changing variables, and box data collection.

# **CROSSWORD PUZZLE**

**Directions:** Fill out the following crossword puzzle using the clues below. The list of words used for the crossword can be found on the vocabulary page of your notebook (page 1).



6) "Under the light" or "in the dark" are examples of \_\_\_\_\_\_ outside of the bottle

7) You designed an to help answer the class question

- 9) The final color of the solutions are the \_\_\_\_\_\_ for this experiment
- 12) In this experiment, we will see how your \_\_\_\_\_ will affect the color of the solution

### Down

1) Opinions, \_\_\_\_\_, and incorrect information should not be included in a procedure

- 2) Noticing that the plant is floating in the solution is an example of an \_\_\_\_\_ made during this experiment
- 3) Things you can change in an experiment
- 4) The values of your \_\_\_\_\_ are not changed in an experiment
- 5) Plants and/or animals that live in the water
- 8) A set of steps to conduct an experiment
- 10) Something that is inside the bottle
- 11) Observations or measurements collected in an experiment



SciTrek is an educational outreach program that is dedicated to allowing 2<sup>nd</sup>-12<sup>th</sup> grade students to experience scientific practices firsthand. SciTrek partners with local teachers to present student-centered inquiry-based modules that not only emphasize the process of science but also specific grade level NGSS performance expectations. Each module allows students to design, carry out, and present their experiments and findings.

For more information, please feel free to visit us on the web at <u>scitrek.chem.ucsb.edu</u> or contact us by e-mail at scitrekelementary@chem.ucsb.edu.

SciTrek is brought to you by generous support from the following organizations:



If you would like to donate to the program or find out how you can get your company's logo on our notebooks please contact <u>scitrekelementary@chem.ucsb.edu</u>.